🎉 publish the paper and code

This commit is contained in:
bobmaster 2022-07-06 14:40:41 +08:00
commit 7281b501cd
Signed by: bobmaster
GPG key ID: 316B77D7914D713C
15 changed files with 3974 additions and 0 deletions

188
.gitignore vendored Normal file
View file

@ -0,0 +1,188 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
#
# macOS General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk

Binary file not shown.

15
README.md Normal file
View file

@ -0,0 +1,15 @@
## 中南大学2022年-6月数学建模校赛
选题A 设计满足一定力学性能的材料化学成分配方
详细要求见附件📎
## 碎碎念
被同学拉着莫名奇妙的就“上车”了。在大伙共同的努力下我们团队4位成员成功的在3天内完成了一篇还看得过去的论文。我也成功的晚睡了几回嘿嘿。
比赛时间只有3天但我们对很多方面的知识还是新手比如论文用`word`排版遇到了麻烦,在不同设备之间存在兼容性问题。此外,还存在问题考虑不周到,面对多重影响因子不知道用什么数学方法去解决等问题,我们专业知识还是欠缺太多。总结起来就是,一定要学会用`Latex`对论文进行排版,多学习一些统计学数学的方法。
我虽然对这类比赛不是特别感兴趣,但既然做了还是有所收获的。比赛期间回顾了`Python`的基本语法,学习了`numpy`、`pandas`、`matplotlib`、`scikit-learn`等库的基本用法,在看到短短几行代码就能得出并校验线性回归方程和生成各种图表曲线时我的内心是振奋的,我从来没有参加过科研,但它给了我感觉。
BobMaster要继续加油呀🌱
## License
Copyright (c) 王岩琪 袁欣萍 郭禹含 龚智勋. All rights reserved.

27
heatmap.py Normal file
View file

@ -0,0 +1,27 @@
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rc('axes', unicode_minus=False)
sns.set_theme(style="white")
sns.set(font="WenQuanYi Zen Hei")
def create_heatmap(dataset):
# 计算相关矩阵
corr = dataset.corr()
# 为上三角矩阵生成蒙版
mask = np.triu(np.ones_like(corr, dtype=bool))
# 设置图大小
f, ax = plt.subplots(figsize=(11, 9))
# 生成颜色图表
cmap = sns.diverging_palette(230, 20, as_cmap=True)
# 使用蒙版和正确的纵横比绘图
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5})
plt.show()

14
hist2d.py Normal file
View file

@ -0,0 +1,14 @@
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
myfont = fm.FontProperties(fname='/usr/lib/python3.10/site-packages/matplotlib/mpl-data/fonts/ttf/wqy-zenhei.ttc')
def create_hist2d(dist1, dist2, title, xlabel, ylabel, fig=(5, 5)):
fig, ax = plt.subplots(figsize=fig, tight_layout=True)
ax.set_title(title, fontproperties=myfont)
ax.set_xlabel(xlabel, fontproperties=myfont)
ax.set_ylabel(ylabel, fontproperties=myfont)
hist2d = ax.hist2d(dist1, dist2, bins=20)
plt.show()

56
linear_regression.py Normal file
View file

@ -0,0 +1,56 @@
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
class OlsModel:
def __init__(self, x, y):
self.x = x
self.y = y
self.results = self.create_model()
def create_model(self):
x = sm.add_constant(self.x)
model = sm.OLS(self.y, x)
results = model.fit()
return results
class MlrModel:
def __init__(self, x, y):
self.x = x
self.y = y
self.results = self.create_model()
def create_model(self):
X_train, X_test, y_train, y_test = train_test_split(self.x, self.y, test_size=0.25, random_state=42)
model = LinearRegression().fit(X_train, y_train)
return model
def ols_calcutate_all(x, qufu_mean_ols_model, qufu_std_ols_model,
kangla_mean_ols_model, kangla_std_ols_model,
yanshen_mean_ols_model, yanshen_std_ols_model):
print("屈服均值: " + str(qufu_mean_ols_model.results.predict(x)) + "\n"
"抗拉均值: " + str(kangla_mean_ols_model.results.predict(x)) + "\n"
"延伸率均值: " + str(yanshen_mean_ols_model.results.predict(x)) + "\n"
"屈服标准差: " + str(qufu_std_ols_model.results.predict(x)) + "\n"
"抗拉标准差: " + str(kangla_std_ols_model.results.predict(x)) + "\n"
"延伸率标准差: " + str(yanshen_std_ols_model.results.predict(x)) + "\n"
)
def mlr_calcutate_all(x, qufu_mean_mlr_model, qufu_std_mlr_model,
kangla_mean_mlr_model, kangla_std_mlr_model,
yanshen_mean_mlr_model, yanshen_std_mlr_model):
print("屈服均值: " + str(qufu_mean_mlr_model.results.predict(x)) + "\n"
"抗拉均值: " + str(kangla_mean_mlr_model.results.predict(x)) + "\n"
"延伸率均值: " + str(yanshen_mean_mlr_model.results.predict(x)) + "\n"
"屈服标准差: " + str(qufu_std_mlr_model.results.predict(x)) + "\n"
"抗拉标准差: " + str(kangla_std_mlr_model.results.predict(x)) + "\n"
"延伸率标准差: " + str(yanshen_std_mlr_model.results.predict(x)) + "\n"
)

8
lineplot.py Normal file
View file

@ -0,0 +1,8 @@
import seaborn as sns
sns.set(font="WenQuanYi Zen Hei")
def create_lineplot(dataset, x, y):
sns.lineplot(x=x, y=y, data=dataset)

318
main.py Normal file
View file

@ -0,0 +1,318 @@
"""
团队成员: 王岩琪 袁欣萍 郭禹含 龚智勋
"""
import pandas as pd
import numpy as np
def main():
"""
数据清洗
"""
with pd.ExcelFile("/home/bobmaster/Downloads/数学建模/附件1化学成分及力学性能.xlsx") as origin_data:
pd_chemicals_raw = pd.read_excel(origin_data, "化学成分", usecols=[0, 2, 3, 4, 5, 6, 7])
pd_physics_raw = pd.read_excel(origin_data, "力学性能")
pd_chemical = pd_chemicals_raw.iloc[1:, :]
pd_physics = pd_physics_raw.dropna(how="any")
# pd_chemical = pd_chemical.reindex(index = pd_chemical.index[::-1])
pd_physics_ronglianhao = pd_physics.iloc[:, 0].astype("int64")
pd_physics_qufu = pd_physics.iloc[:, 2]
pd_physics_kangla = pd_physics.iloc[:, 3]
pd_physics_yanshen = pd_physics.iloc[:, 4]
# 提取相同熔炼号的力学性能数据
comp_table = pd_physics.iloc[:, 0].duplicated(keep="last") # 比较表
# phy_num = pd_physics.count() # 力学表数据量 11213
phy_num = 11213
# phy_ronglianhao = []
phy_dict = {}
phy_qufu = []
phy_kangla = []
phy_yanshen = []
temp = 0
for i in range(phy_num):
phy_qufu.append(pd_physics_qufu[i])
phy_kangla.append(pd_physics_kangla[i])
phy_yanshen.append(pd_physics_yanshen[i])
if (comp_table[i] == False):
# phy_ronglianhao[temp] = pd_physics_ronglianhao[i]
phy_dict[pd_physics_ronglianhao[i]] = [phy_qufu, phy_kangla, phy_yanshen]
temp += 1
phy_qufu = []
phy_kangla = []
phy_yanshen = []
# 数据规约 - 力学性能数据均值和标准差
phy_dict_qufu_mean = {}
phy_dict_qufu_std = {}
phy_dict_kangla_mean = {}
phy_dict_kangla_std = {}
phy_dict_yanshen_mean = {}
phy_dict_yanshen_std = {}
phy_dict_qufu_mean_list = []
phy_dict_qufu_std_list = []
phy_dict_kangla_mean_list = []
phy_dict_kangla_std_list = []
phy_dict_yanshen_mean_list = []
phy_dict_yanshen_std_list = []
for key in phy_dict:
np_physics_array_qufu = np.array(phy_dict[key][0])
np_physics_array_kangla = np.array(phy_dict[key][1])
np_physics_array_yanshen = np.array(phy_dict[key][2])
phy_dict_qufu_mean[key] = np_physics_array_qufu.mean()
phy_dict_qufu_std[key] = np_physics_array_qufu.std()
phy_dict_kangla_mean[key] = np_physics_array_kangla.mean()
phy_dict_kangla_std[key] = np_physics_array_kangla.std()
phy_dict_yanshen_mean[key] = np_physics_array_yanshen.mean()
phy_dict_yanshen_std[key] = np_physics_array_yanshen.std()
# 清洗化学成分
# 重建索引保证在同一熔炼号的情况下与力学指标数据匹配
pd_chem_ronglianhao = pd_chemical.iloc[:, 0].astype("int64")
pd_chem_ronglianhao = pd_chem_ronglianhao.drop_duplicates().reset_index().iloc[:, 1]
pd_chem_E1_data = pd_chemical.iloc[:, 1].reset_index().iloc[:, 1]
pd_chem_E2_data = pd_chemical.iloc[:, 2].reset_index().iloc[:, 1]
pd_chem_E3_data = pd_chemical.iloc[:, 3].reset_index().iloc[:, 1]
pd_chem_E4_data = pd_chemical.iloc[:, 4].reset_index().iloc[:, 1]
pd_chem_E5_data = pd_chemical.iloc[:, 5].reset_index().iloc[:, 1]
pd_chem_E6_data = pd_chemical.iloc[:, 6].reset_index().iloc[:, 1]
pd_chem_E1 = {}
pd_chem_E2 = {}
pd_chem_E3 = {}
pd_chem_E4 = {}
pd_chem_E5 = {}
pd_chem_E6 = {}
temp = 0
# 数据规约 - 化学成分
# 0-701 清洗后得到的范围
for i in range(702):
if (i % 2 != 0 and temp != 321):
pd_chem_E1[pd_chem_ronglianhao[temp]] = (pd_chem_E1_data[i - 1] + pd_chem_E1_data[i]) / 2
pd_chem_E2[pd_chem_ronglianhao[temp]] = (pd_chem_E2_data[i - 1] + pd_chem_E2_data[i]) / 2
pd_chem_E3[pd_chem_ronglianhao[temp]] = (pd_chem_E3_data[i - 1] + pd_chem_E3_data[i]) / 2
pd_chem_E4[pd_chem_ronglianhao[temp]] = (pd_chem_E4_data[i - 1] + pd_chem_E4_data[i]) / 2
pd_chem_E5[pd_chem_ronglianhao[temp]] = (pd_chem_E5_data[i - 1] + pd_chem_E5_data[i]) / 2
pd_chem_E6[pd_chem_ronglianhao[temp]] = (pd_chem_E6_data[i - 1] + pd_chem_E6_data[i]) / 2
temp += 1
# 整理出最终所需数据并保证化学成分与力学性能数据一致性
E1_list = []
E2_list = []
E3_list = []
E4_list = []
E5_list = []
E6_list = []
for key in pd_chem_E1:
if key in phy_dict:
E1_list.append(pd_chem_E1[key])
E2_list.append(pd_chem_E2[key])
E3_list.append(pd_chem_E3[key])
E4_list.append(pd_chem_E4[key])
E5_list.append(pd_chem_E5[key])
E6_list.append(pd_chem_E6[key])
phy_dict_qufu_mean_list.append(phy_dict_qufu_mean[key])
phy_dict_qufu_std_list.append(phy_dict_qufu_std[key])
phy_dict_kangla_mean_list.append(phy_dict_kangla_mean[key])
phy_dict_kangla_std_list.append(phy_dict_kangla_std[key])
phy_dict_yanshen_mean_list.append(phy_dict_yanshen_mean[key])
phy_dict_yanshen_std_list.append(phy_dict_yanshen_std[key])
np_E1 = np.array(E1_list)
np_E2 = np.array(E2_list)
np_E3 = np.array(E3_list)
np_E4 = np.array(E4_list)
np_E5 = np.array(E5_list)
np_E6 = np.array(E6_list)
# 初始化二维直方图数据
# dist1 材料
dist1_E1 = np_E1
dist1_E2 = np_E2
dist1_E3 = np_E3
dist1_E4 = np_E4
dist1_E5 = np_E5
dist1_E6 = np_E6
# dist2 力学性能均值
dist2_qufu = np.array(phy_dict_qufu_mean_list)
dist2_kangla = np.array(phy_dict_kangla_mean_list)
dist2_yanshen = np.array(phy_dict_yanshen_mean_list)
# dist3 力学性能标准差
dist3_qufu = np.array(phy_dict_qufu_std_list)
dist3_kangla = np.array(phy_dict_kangla_std_list)
dist3_yanshen = np.array(phy_dict_yanshen_std_list)
# 绘制化学成分与力学特性关系的二维直方图
from hist2d import create_hist2d
create_hist2d(dist1_E1, dist2_qufu, title="化学成分E1与屈服特性的关系", xlabel="E1 %", ylabel="屈服特性均值")
create_hist2d(dist1_E1, dist2_kangla, title="化学成分E1与抗拉特性的关系", xlabel="E1 %", ylabel="抗拉特性均值")
create_hist2d(dist1_E1, dist2_yanshen, title="化学成分E1与延伸率特性的关系", xlabel="E1 %", ylabel="延伸率特性均值")
create_hist2d(dist1_E2, dist2_qufu, title="化学成分E2与屈服特性的关系", xlabel="E2 %", ylabel="屈服特性均值")
create_hist2d(dist1_E2, dist2_kangla, title="化学成分E2与抗拉特性的关系", xlabel="E2 %", ylabel="抗拉特性均值")
create_hist2d(dist1_E2, dist2_yanshen, title="化学成分E2与延伸率特性的关系", xlabel="E2 %", ylabel="延伸率特性均值")
create_hist2d(dist1_E3, dist2_qufu, title="化学成分E3与屈服特性的关系", xlabel="E3 %", ylabel="屈服特性均值")
create_hist2d(dist1_E3, dist2_kangla, title="化学成分E3与抗拉特性的关系", xlabel="E3 %", ylabel="抗拉特性均值")
create_hist2d(dist1_E3, dist2_yanshen, title="化学成分E3与延伸率特性的关系", xlabel="E3 %", ylabel="延伸率特性均值")
create_hist2d(dist1_E4, dist2_qufu, title="化学成分E4与屈服特性的关系", xlabel="E4 %", ylabel="屈服特性均值")
create_hist2d(dist1_E4, dist2_kangla, title="化学成分E4与抗拉特性的关系", xlabel="E4 %", ylabel="抗拉特性均值")
create_hist2d(dist1_E4, dist2_yanshen, title="化学成分E4与延伸率特性的关系", xlabel="E4 %", ylabel="延伸率特性均值")
create_hist2d(dist1_E5, dist2_qufu, title="化学成分E5与屈服特性的关系", xlabel="E5 %", ylabel="屈服特性均值", fig=(10, 10))
create_hist2d(dist1_E5, dist2_kangla, title="化学成分E5与抗拉特性的关系", xlabel="E5 %", ylabel="抗拉特性均值", fig=(10, 10))
create_hist2d(dist1_E5, dist2_yanshen, title="化学成分E5与延伸率特性的关系", xlabel="E5 %", ylabel="延伸率特性均值", fig=(10, 10))
create_hist2d(dist1_E6, dist2_qufu, title="化学成分E6与屈服特性的关系", xlabel="E6 %", ylabel="屈服特性均值")
create_hist2d(dist1_E6, dist2_kangla, title="化学成分E6与抗拉特性的关系", xlabel="E6 %", ylabel="抗拉特性均值")
create_hist2d(dist1_E6, dist2_yanshen, title="化学成分E6与延伸率特性的关系", xlabel="E6 %", ylabel="延伸率特性均值")
# 创建 OLS 回归模型
from linear_regression import OlsModel
from linear_regression import ols_calcutate_all
x = np.array([dist1_E1, dist1_E2, dist1_E3, dist1_E4, dist1_E5, dist1_E6]).transpose()
# 材料与屈服特性均值回归模型
y = np.array(dist2_qufu)
qufu_mean_ols_model = OlsModel(x, y)
# 如需打印报告请删掉下一行的注释
# print(qufu_mean_ols_model.results.summary())
# 材料与抗拉特性均值回归模型
y = np.array(dist2_kangla)
kangla_mean_ols_model = OlsModel(x, y)
# 材料与延伸率特性均值回归模型
y = np.array(dist2_yanshen)
yanshen_mean_ols_model = OlsModel(x, y)
# 材料与屈服特性标准差回归模型
y = np.array(dist3_qufu)
qufu_std_ols_model = OlsModel(x, y)
# 材料与抗拉特性标准差回归模型
y = np.array(dist3_kangla)
kangla_std_ols_model = OlsModel(x, y)
# 材料与延伸率特性标准差回归模型
y = np.array(dist3_yanshen)
yanshen_std_ols_model = OlsModel(x, y)
# 给定熔炼号计算均值和标准差
# ronglianhao = 90624
# x1 = pd_chem_E1[ronglianhao]
# x2 = pd_chem_E2[ronglianhao]
# x3 = pd_chem_E3[ronglianhao]
# x4 = pd_chem_E4[ronglianhao]
# x5 = pd_chem_E5[ronglianhao]
# x6 = pd_chem_E6[ronglianhao]
# x = np.array([1, x1, x2, x3, x4, x5, x6])
# ols_calcutate_all(x, qufu_mean_ols_model, qufu_std_ols_model,
# kangla_mean_ols_model, kangla_std_ols_model,
# yanshen_mean_ols_model, yanshen_std_ols_model)
"""
屈服均值: [281.04367017]
抗拉均值: [302.12712467]
延伸率均值: [11.72968023]
屈服标准差: [4.04484533]
抗拉标准差: [3.60625011]
延伸率标准差: [0.68357895]
"""
from linear_regression import MlrModel
from linear_regression import mlr_calcutate_all
# 创建 MLR 多元线性回归模型
x = np.array([dist1_E1, dist1_E2, dist1_E3, dist1_E4, dist1_E5, dist1_E6]).transpose()
# 材料与屈服特性均值回归模型
y = np.array(dist2_qufu)
qufu_mean_mlr_model = MlrModel(x, y)
# 回归系数
# qufu_mean_mlr_model.results.coef_
# 常数,回归方程截距
# qufu_mean_mlr_model.results.intercept_
# 材料与抗拉特性均值回归模型
y = np.array(dist2_kangla)
kangla_mean_mlr_model = MlrModel(x, y)
# 材料与延伸率特性均值回归模型
y = np.array(dist2_yanshen)
yanshen_mean_mlr_model = MlrModel(x, y)
# 材料与屈服特性标准差回归模型
y = np.array(dist3_qufu)
qufu_std_mlr_model = MlrModel(x, y)
# 材料与抗拉特性标准差回归模型
y = np.array(dist3_kangla)
kangla_std_mlr_model = MlrModel(x, y)
# 材料与延伸率特性标准差回归模型
y = np.array(dist3_yanshen)
yanshen_std_mlr_model = MlrModel(x, y)
# 给定熔炼号计算均值和标准差
# ronglianhao = 90624
# x1 = pd_chem_E1[ronglianhao]
# x2 = pd_chem_E2[ronglianhao]
# x3 = pd_chem_E3[ronglianhao]
# x4 = pd_chem_E4[ronglianhao]
# x5 = pd_chem_E5[ronglianhao]
# x6 = pd_chem_E6[ronglianhao]
# x = np.array([1, x1, x2, x3, x4, x5, x6]).reshape(-1,6)
# ols_calcutate_all(x, qufu_mean_ols_model, qufu_std_ols_model,
# kangla_mean_ols_model, kangla_std_ols_model,
# yanshen_mean_ols_model, yanshen_std_ols_model)
"""
屈服均值: [281.04919773]
抗拉均值: [302.13923671]
延伸率均值: [11.75333675]
屈服标准差: [4.06391763]
抗拉标准差: [3.6079243]
延伸率标准差: [0.68167218]
"""
from heatmap import create_heatmap
# 绘制热点图
dataset = pd.DataFrame(
{'屈服': phy_dict_qufu_mean_list, '抗拉': phy_dict_kangla_mean_list, '延伸率': phy_dict_yanshen_mean_list,
'E1': np_E1, 'E2': np_E2, 'E3': np_E3, 'E4': np_E4, 'E5': np_E5, 'E6': np_E6})
create_heatmap(dataset)
# from lineplot import create_lineplot
# 绘制折线图
# x = "E1" 横坐标,从 E1-E6 选取
# y = "屈服" 纵坐标,从屈服、抗拉、延伸率 选取
# create_lineplot(dataset, x, y)
if __name__=='__main__':
main()

271
organized_data.csv Normal file
View file

@ -0,0 +1,271 @@
,熔炼号,屈服均值,抗拉均值,延伸率均值,屈服标准差,抗拉标准差,延伸率标准差,E1,E2,E3,E4,E5,E6
0,90623,284.11764705882354,304.4117647058824,11.558823529411764,4.042165304143407,3.5323517167064535,0.5657465900491572,0.4965,1.026,0.2155,0.1825,0.107,0.062
1,90622,280.8333333333333,301.23333333333335,11.733333333333333,4.8654107968620925,4.19271855588816,0.7039570693980959,0.499,1.0325000000000002,0.222,0.184,0.105,0.0625
2,90621,279.0,300.8125,11.328125,4.183300132670378,3.3859775176453843,0.7866997421983816,0.4935,1.02,0.229,0.1845,0.102,0.0605
3,90620,283.0882352941176,303.79411764705884,11.558823529411764,5.232071050172048,4.350655202615064,0.6834676493307206,0.4915,1.0165000000000002,0.2125,0.18,0.104,0.062
4,90619,283.0,304.4,11.5,3.3466401061363023,2.823709144606316,0.6454972243679028,0.4945,1.024,0.2175,0.186,0.1155,0.0625
5,90618,281.4375,302.71875,11.390625,4.379907961361745,4.207392118343618,0.8075268474639093,0.494,1.0265,0.205,0.1785,0.106,0.062
6,90617,280.90625,301.40625,11.703125,3.9793166420253616,3.9039993516264833,0.7273601132692114,0.499,1.0325000000000002,0.216,0.1845,0.108,0.062
7,90616,283.46666666666664,304.3666666666667,11.516666666666667,4.432706722634478,4.061882431692095,0.664371047599825,0.505,1.0315,0.218,0.1835,0.1065,0.066
8,90615,282.11538461538464,303.03846153846155,11.923076923076923,4.885826621478492,4.228845716584439,0.7806839665455554,0.504,1.0350000000000001,0.2275,0.184,0.1055,0.06
9,90614,282.7857142857143,304.0357142857143,11.75,4.047549019002054,3.390976922628038,0.6813851438692469,0.5025,1.0085000000000002,0.2235,0.185,0.1075,0.064
10,90605,280.27777777777777,301.8611111111111,11.694444444444445,4.413433477659813,4.007997406420886,0.8841016923799748,0.4975,1.0190000000000001,0.2145,0.1835,0.11,0.062
11,90604,282.6333333333333,304.0,11.5,4.423296910174079,3.7327380477785117,0.5322906474223771,0.4905,1.0350000000000001,0.2235,0.181,0.11,0.061
12,90603,286.34375,307.0625,11.5,2.8018897083040226,2.164161211647598,0.8660254037844386,0.5015000000000001,1.021,0.2065,0.1845,0.106,0.0605
13,90602,284.8333333333333,305.26666666666665,11.133333333333333,3.194613522095522,2.4073960113690385,0.6574360974438672,0.5,1.0225,0.2225,0.182,0.1065,0.065
14,90601,282.25,304.09375,11.015625,3.5089172119045497,3.1658270542624405,0.7124383196986248,0.491,1.0125000000000002,0.2075,0.1805,0.1025,0.0625
15,90600,280.625,301.53125,11.3125,3.7645550865938993,3.1916333494779754,0.6584783595532961,0.4975,1.0225,0.212,0.1805,0.106,0.063
16,90599,281.84375,303.34375,11.375,3.6836579560947293,3.1485053497651867,0.5448623679425842,0.502,1.026,0.211,0.1795,0.104,0.0615
17,90598,283.75,304.65625,11.03125,4.205650960315181,3.4965105373071594,0.63661089960823,0.4965,1.0405,0.2055,0.181,0.1075,0.061
18,90594,284.7916666666667,305.4583333333333,11.0625,2.8719790892151162,2.7230370095824177,0.6969053618199055,0.507,1.0260000000000002,0.2285,0.184,0.108,0.0625
19,90586,282.265625,302.8125,11.2265625,3.4060708095069017,3.2106998847603307,0.5924636559264627,0.5055000000000001,1.0165000000000002,0.214,0.1835,0.1065,0.0625
20,90585,282.80357142857144,303.73214285714283,11.348214285714286,3.8425235516386835,3.583150406658182,0.5663136029964101,0.509,1.0335,0.219,0.1835,0.1055,0.063
21,90584,285.6666666666667,305.93333333333334,11.283333333333333,3.080404013906112,2.2939534045447,0.6011562932290476,0.503,1.016,0.213,0.1815,0.1065,0.0635
22,90583,283.7857142857143,303.5,11.142857142857142,4.639559268301423,3.385895112711809,0.4791574237499549,0.4905,1.0155,0.2105,0.1785,0.107,0.0615
23,90582,284.93333333333334,304.96666666666664,11.05,4.024370206076419,3.420363853289426,0.6103277807866851,0.4995,1.0170000000000001,0.214,0.1825,0.1065,0.0625
24,90581,285.19444444444446,304.75,11.291666666666666,4.788988784727619,3.960744879438715,0.616610357789531,0.503,1.0305,0.215,0.1845,0.11,0.0605
25,90580,284.11290322580646,304.7258064516129,11.46774193548387,3.844161214393545,3.6152426181856008,0.6890325601062525,0.4985,1.0230000000000001,0.215,0.18,0.1065,0.06
26,90579,285.15625,305.328125,11.4921875,4.531896505603366,4.031340841999719,0.8267603732906833,0.492,1.022,0.21,0.178,0.1065,0.0615
27,90578,285.66129032258067,305.6774193548387,11.137096774193548,4.204235761118498,3.3106582210188327,0.7359947998956685,0.497,1.0195,0.217,0.1785,0.106,0.062
28,90577,282.328125,303.125,11.4140625,5.25313801307133,3.9941363271676145,0.8364484419817817,0.4945,1.0265,0.209,0.1765,0.102,0.0625
29,90576,283.7,304.0833333333333,11.191666666666666,5.317580903631525,4.005378328642072,0.6957709552878893,0.484,1.016,0.211,0.182,0.103,0.0595
30,90521,284.741935483871,304.38709677419354,11.75,3.8768772096964175,3.1384958319884615,0.7113707803225926,0.51,1.0145,0.2095,0.1845,0.1045,0.063
31,90520,280.6969696969697,301.07575757575756,11.477272727272727,5.485434423750187,4.6033933664944415,0.9021515451787021,0.502,1.0265,0.2135,0.177,0.104,0.0665
32,90519,282.5833333333333,303.34722222222223,11.25,5.392252672945593,4.0316791450207266,0.9090593428863095,0.502,1.0305,0.214,0.1835,0.1045,0.0605
33,90518,279.41379310344826,300.2241379310345,11.887931034482758,4.916665826934502,4.242815848679108,0.7134369426276063,0.496,1.0190000000000001,0.213,0.1795,0.105,0.064
34,90517,281.25,302.2142857142857,12.375,3.77609965062213,3.016113190102488,0.6764534616027075,0.5015000000000001,1.0185,0.2065,0.182,0.106,0.064
35,90516,280.93548387096774,301.9193548387097,11.403225806451612,5.312404739918411,4.116443763879967,0.9912468105038357,0.4935,1.0155,0.2105,0.1795,0.106,0.064
36,90515,282.8,303.3666666666667,11.741666666666667,4.534313619501853,3.9241418028517887,0.7554891719203453,0.4935,1.021,0.2115,0.1775,0.102,0.0625
37,90514,286.46875,306.53125,11.65625,3.1818270596467055,3.082048578056485,0.8143008887997114,0.4935,1.0305,0.2115,0.1865,0.105,0.062
38,90513,284.9117647058824,305.3529411764706,11.279411764705882,3.575798117893514,3.3332756627075737,0.7494230768377003,0.497,1.0075,0.208,0.1825,0.101,0.061
39,90512,283.56666666666666,303.6333333333333,11.45,4.200661323596031,3.6192387167592153,0.8301606270274848,0.5185,1.025,0.218,0.1865,0.104,0.0615
40,90511,279.52941176470586,300.44117647058823,11.279411764705882,4.153207790142083,3.623381394990598,0.8330593551922675,0.5005,1.0365000000000002,0.2255,0.179,0.1055,0.0595
41,90510,284.1666666666667,304.73333333333335,10.983333333333333,4.705198071164369,4.501357819838613,0.5842849380986034,0.5045,1.029,0.22,0.1835,0.1045,0.06
42,90509,281.27272727272725,301.1818181818182,11.477272727272727,4.564505531139343,3.8921408415650265,1.0920921615212693,0.505,1.0220000000000002,0.212,0.179,0.101,0.0645
43,90468,280.23333333333335,301.6333333333333,11.333333333333334,3.809491071287899,3.08202675019035,0.5055250296034367,0.5155000000000001,1.0315,0.2355,0.1825,0.109,0.062
44,90467,282.06666666666666,302.76666666666665,11.316666666666666,3.0652170486860397,2.603629944690468,0.6767980168082319,0.504,1.012,0.2285,0.1835,0.111,0.0615
45,90466,283.3235294117647,303.29411764705884,11.426470588235293,3.878451694072339,3.468593644189545,0.6874115230894261,0.5,1.0315,0.219,0.1855,0.1065,0.0615
46,90465,283.13157894736844,303.2631578947368,11.763157894736842,3.333806522277176,2.9171382022212673,0.7586071213368198,0.503,1.0205000000000002,0.213,0.179,0.101,0.061
47,90435,280.59375,300.875,12.015625,3.6730383795299497,3.266783586342995,0.5517638619690493,0.496,1.0195,0.208,0.182,0.1065,0.066
48,90434,281.875,302.21875,12.015625,4.648588495446763,4.067664985897929,0.7953416620390258,0.4945,1.0225,0.2135,0.177,0.105,0.064
49,90433,281.57142857142856,301.89285714285717,11.696428571428571,3.9859446938010588,3.26605141366983,0.6858165846311257,0.4905,1.0090000000000001,0.214,0.179,0.104,0.064
50,90432,283.2352941176471,303.1764705882353,11.147058823529411,3.933706705247174,3.6012300858856396,0.5494571085961589,0.501,1.004,0.2095,0.184,0.105,0.0625
51,90431,284.375,304.09375,11.765625,4.9355217555999085,3.947779241231708,0.7393448852700613,0.4955,1.0260000000000002,0.20500000000000002,0.1785,0.106,0.0615
52,90430,282.56666666666666,302.73333333333335,12.1,3.5466729323252926,2.9881246441353295,0.6879922480183431,0.4985,1.0235,0.22,0.1815,0.1095,0.0645
53,90429,283.1666666666667,303.2083333333333,11.9375,5.120763831912406,4.707964587330236,0.5460559342533815,0.494,1.0335,0.209,0.182,0.106,0.062
54,90322,282.06666666666666,302.8666666666667,11.816666666666666,2.2939534045447,2.526306042866189,0.6387922632245601,0.4945,1.0175,0.21,0.177,0.1035,0.0645
55,90321,284.0833333333333,303.8333333333333,12.041666666666666,3.6770685788183686,3.0046260628866577,0.5051814855409226,0.5095000000000001,1.034,0.215,0.185,0.108,0.0615
56,90320,286.43333333333334,305.6666666666667,11.65,4.7447046506839845,3.9015666369065416,0.5188127472091127,0.492,1.0245000000000002,0.2055,0.18,0.103,0.062
57,90319,287.625,307.03125,11.515625,4.985917668794783,3.892977451450239,0.40474480771839433,0.4955,1.042,0.2065,0.1785,0.105,0.064
58,90318,282.0882352941176,301.88235294117646,11.647058823529411,3.542744425199726,3.055994166555421,0.6362737544936452,0.4995,1.0265,0.2135,0.1795,0.105,0.0625
59,90317,284.4375,303.53125,11.984375,4.220022956098699,3.6484960514573674,0.7653060560161535,0.489,1.0295,0.205,0.1765,0.106,0.06
60,90316,286.9,306.26666666666665,11.85,4.019535628237006,3.5490217744549777,0.5346338310781814,0.496,1.0150000000000001,0.217,0.1805,0.109,0.066
61,90315,284.46666666666664,303.6333333333333,11.7,2.679966832298904,2.5623340054636823,0.49328828623162485,0.502,1.0155,0.2195,0.182,0.115,0.0635
62,90314,279.2,299.1666666666667,12.016666666666667,3.824482535803591,3.50317316474967,0.4913134324327892,0.4985,1.0245000000000002,0.226,0.181,0.109,0.062
63,90313,285.76666666666665,305.03333333333336,11.966666666666667,3.2525203902341473,2.869184940400709,0.7630348761506396,0.5025,1.0385,0.2195,0.182,0.1095,0.058499999999999996
64,90312,282.90625,302.59375,11.96875,3.5475288494246247,3.267829698362508,0.63661089960823,0.5,1.043,0.20800000000000002,0.181,0.1015,0.063
65,90221,285.0,304.25,11.90625,4.286607049870562,3.9210967853395307,0.7008644216251814,0.498,1.0225,0.20400000000000001,0.186,0.1075,0.063
66,90220,287.3125,305.65625,11.765625,2.877037321620976,2.7569160193049043,0.6729642333549384,0.497,1.0155,0.214,0.183,0.1075,0.061
67,90219,282.125,302.984375,12.1640625,4.625,4.033036183742343,0.7858846900746635,0.503,1.0170000000000001,0.221,0.185,0.1065,0.0645
68,90218,283.75,304.55102040816325,12.38265306122449,2.969874250069267,2.832473675435041,0.6577676393595143,0.5075000000000001,1.0265,0.2125,0.1905,0.101,0.061
69,90217,285.4516129032258,305.53225806451616,12.266129032258064,3.761766140434221,3.206433763823885,0.7657893984024035,0.4985,1.0230000000000001,0.208,0.179,0.105,0.063
70,90216,282.8,303.37142857142857,12.042857142857143,3.576111215911975,3.538245846951479,0.6477590885002648,0.4895,1.0305,0.214,0.18,0.1055,0.0625
71,90215,284.671875,305.1875,12.1171875,3.5840562194774512,3.4545034013588696,0.6774388089294486,0.4855,1.008,0.206,0.1825,0.105,0.064
72,90214,282.1774193548387,303.3709677419355,12.209677419354838,3.3045627964610427,2.846808461824268,0.6509818087293731,0.494,1.0110000000000001,0.218,0.184,0.1055,0.0655
73,90213,280.2413793103448,301.5344827586207,12.189655172413794,3.271139972271536,3.3590614311111664,0.7121336699332201,0.499,1.0315,0.2175,0.181,0.1115,0.0625
74,90212,281.04285714285714,301.95714285714286,12.242857142857142,3.8076453702132134,3.482346147912,0.6253162465211225,0.5005,1.0315,0.2135,0.182,0.1025,0.062
75,90211,281.6,302.26666666666665,11.875,3.0615900008546757,2.694851057521032,0.5746375669353104,0.5065,1.0275,0.224,0.1835,0.105,0.0625
76,90210,283.421875,303.734375,12.078125,3.8193777614128455,3.6879965237747987,0.697197234916347,0.489,1.0375,0.2205,0.1785,0.1075,0.062
77,90209,284.64516129032256,305.2258064516129,12.32258064516129,3.5880481448991826,3.390781405986559,0.6665799457990911,0.502,1.005,0.229,0.1825,0.1065,0.062
78,90208,283.48387096774195,303.9032258064516,12.419354838709678,3.4722026823360466,3.34427617617921,0.7306291388971693,0.4935,1.0135,0.218,0.18,0.109,0.063
79,90207,281.46875,302.484375,12.40625,3.5705774655509157,3.513332585932479,0.6724198372296879,0.5,1.0430000000000001,0.2195,0.1815,0.105,0.0615
80,90206,286.48333333333335,306.7,12.1,3.4082823957073876,3.3877229323937734,0.6506407098647712,0.5075000000000001,1.0350000000000001,0.2185,0.187,0.107,0.0605
81,90205,281.3225806451613,302.4516129032258,12.298387096774194,6.121812385940756,5.027913757552122,0.6504320984332004,0.497,1.0345,0.2145,0.181,0.106,0.061
82,90201,286.61290322580646,306.51612903225805,12.056451612903226,3.5802092149611613,3.4065493632113766,0.6962158007450535,0.5085,1.0180000000000002,0.224,0.181,0.1075,0.0635
83,90200,285.84615384615387,306.2692307692308,11.942307692307692,4.408839963356031,3.9764469287939446,0.6839776632222593,0.5,1.0170000000000001,0.2165,0.1815,0.104,0.0615
84,90199,284.8235294117647,304.7647058823529,12.0,3.7217215200313363,3.4390390546455216,0.7376433061167325,0.4975,1.0394999999999999,0.2045,0.1805,0.106,0.061
85,90198,287.0,306.67857142857144,11.928571428571429,4.242640687119285,3.780150898618537,0.6368769464331075,0.524,1.0375,0.2115,0.186,0.1065,0.05499999999999999
86,90197,286.25,306.17857142857144,12.303571428571429,5.11737237261468,5.078340360425494,0.5876600954251547,0.486,1.0110000000000001,0.2075,0.1765,0.102,0.067
87,90196,286.5,305.96875,12.171875,4.107919181288746,3.762349457121175,0.6915717492603353,0.4955,1.038,0.2055,0.177,0.105,0.061
88,90195,282.93333333333334,303.43333333333334,12.283333333333333,3.982740541665026,3.611863169550524,0.5580223014261069,0.516,1.0190000000000001,0.228,0.1875,0.1095,0.0625
89,90194,284.03125,304.84375,12.03125,4.4894624887061925,4.711086492254202,0.9348922063532245,0.5035000000000001,1.0270000000000001,0.213,0.185,0.104,0.061
90,90193,283.88235294117646,304.4117647058824,12.367647058823529,4.861400826210444,4.116806636922987,0.59789856912518,0.487,1.0100000000000002,0.208,0.1805,0.1035,0.0665
91,90192,287.1875,307.28125,12.40625,3.4043859578490805,3.402520894498666,0.5219779090153146,0.4975,1.021,0.2265,0.1865,0.113,0.064
92,90191,283.8666666666667,304.5,12.4,4.349201714746691,4.364630568559039,0.6244997998398398,0.5025,1.041,0.23199999999999998,0.18,0.108,0.0595
93,90190,285.32142857142856,305.10714285714283,12.178571428571429,5.217098067402794,5.1083914557623835,0.6841872878810006,0.5105,1.0314999999999999,0.214,0.1825,0.1065,0.062
94,90189,283.875,303.78125,12.078125,4.668712349245775,4.240683722880074,0.6263656954008576,0.4955,1.0180000000000002,0.214,0.183,0.102,0.0605
95,90188,286.8333333333333,306.75,11.875,3.4115815817431203,2.9190466480228325,0.5253966755382705,0.496,1.02,0.209,0.1775,0.104,0.0625
96,90187,289.9,308.875,11.725,5.219195340279955,4.664694523760372,0.6015604707757983,0.512,1.0315,0.2215,0.1875,0.11,0.0635
97,90186,288.8666666666667,308.5,11.7,3.922017621355394,3.253203549323856,0.7702813338860894,0.508,1.0030000000000001,0.207,0.183,0.105,0.0605
98,90131,285.06666666666666,305.7,11.716666666666667,2.9657301892713632,2.396525262402492,0.8532617157446801,0.4805,1.0070000000000001,0.2215,0.1835,0.1135,0.0675
99,90104,285.47058823529414,306.11764705882354,11.102941176470589,4.0164023564968385,4.0275865337938095,0.627546714510349,0.4965,1.0155,0.2145,0.1825,0.113,0.0635
100,90103,279.47058823529414,300.6470588235294,11.705882352941176,3.4405479566799433,2.827203491928921,0.5703152773430975,0.503,1.0185,0.225,0.185,0.106,0.063
101,90102,281.40625,302.65625,11.375,2.977618333080988,3.047636122882783,0.5994789404140899,0.518,1.0545,0.223,0.188,0.103,0.057999999999999996
102,90101,290.85,310.825,11.0625,5.443114917030504,4.821242059884568,0.5023382824352529,0.504,1.024,0.211,0.1865,0.10200000000000001,0.0615
103,90100,284.39285714285717,304.5,11.410714285714286,4.569614595457741,3.9776159406645295,0.5518406121558016,0.4895,1.0270000000000001,0.2095,0.178,0.1095,0.061
104,90099,285.5769230769231,305.84615384615387,11.73076923076923,3.9533148400869957,3.53762531925136,0.541201818441165,0.49,1.038,0.2365,0.1775,0.1055,0.0625
105,90066,280.84375,301.8125,12.0625,3.2797615671722236,2.591301555203485,0.6091746465505602,0.485,1.0205000000000002,0.216,0.181,0.107,0.063
106,90065,284.15625,304.375,11.4375,3.725833589614544,3.1991209730174317,0.6218671481916375,0.491,1.0015,0.2135,0.187,0.1015,0.0635
107,90064,278.39285714285717,300.39285714285717,11.857142857142858,5.016681356906645,4.143318939779401,0.6388765649999398,0.4885,1.0145,0.20350000000000001,0.182,0.1075,0.0635
108,90063,277.3666666666667,298.6,12.233333333333333,3.4106043778518527,3.4019602192461527,0.6420453428086074,0.482,1.0180000000000002,0.2135,0.177,0.105,0.064
109,90062,279.84375,301.21875,12.28125,3.6151536533735324,3.6634544404837355,0.5986638768958755,0.49,1.0235,0.2055,0.181,0.106,0.062
110,90061,272.7352941176471,295.1764705882353,12.294117647058824,3.2204203555492543,2.6620490585846497,0.6430356208551602,0.494,1.026,0.2175,0.185,0.105,0.0665
111,90060,285.4642857142857,306.10714285714283,11.767857142857142,5.254128600152338,4.600770787241491,0.6611967350562006,0.5015000000000001,1.017,0.215,0.1835,0.107,0.065
112,90059,282.21875,303.28125,11.703125,4.922742979020944,4.711915580472553,0.5709008095764097,0.497,1.0255,0.212,0.1815,0.1055,0.06
113,90058,282.4,303.4,11.933333333333334,4.103656905736638,3.7735924528226414,0.5878397362849467,0.499,1.018,0.2235,0.1815,0.108,0.061
114,90057,283.23333333333335,304.1666666666667,11.783333333333333,3.461053147365537,3.1207192903061447,0.6282692274990254,0.5085,1.028,0.228,0.187,0.1105,0.0595
115,90055,284.35714285714283,305.57142857142856,12.178571428571429,4.236021429480782,4.092053024972144,0.8260738218728843,0.494,1.033,0.2205,0.1825,0.1065,0.064
116,91269,279.55882352941177,300.7647058823529,12.102941176470589,4.333122610438507,4.0877062713156915,0.6727840725704631,0.503,1.0270000000000001,0.2175,0.1805,0.108,0.063
117,91268,281.7352941176471,303.11764705882354,11.926470588235293,5.537619065401196,4.121426836612555,0.6545356789490555,0.498,1.0225,0.2125,0.1775,0.1085,0.0605
118,91267,281.3529411764706,303.02941176470586,12.073529411764707,3.6532206012292323,3.2402368660480496,0.8056085838119023,0.5015000000000001,1.0195,0.2115,0.1845,0.1035,0.062
119,91266,287.5882352941176,308.44117647058823,12.220588235294118,3.3878471999957482,3.0018736940018784,0.7193867534491182,0.4945,1.0285000000000002,0.20850000000000002,0.18,0.111,0.0615
120,91265,283.56666666666666,304.43333333333334,12.55,3.0075830089218742,2.7650597743187317,0.6499999999999999,0.5015000000000001,1.016,0.212,0.1795,0.1105,0.065
121,91264,281.29411764705884,302.7352941176471,12.617647058823529,3.784872456975391,3.0225507686040487,0.7382294351771255,0.498,1.0215,0.213,0.1785,0.109,0.063
122,91263,286.35714285714283,307.57142857142856,12.285714285714286,4.4418005174405,4.118152944399879,0.6998542122237653,0.512,1.032,0.221,0.1855,0.108,0.0595
123,91262,288.60714285714283,308.9642857142857,12.017857142857142,3.6286487618305934,3.1222947474247076,0.8181222277825219,0.528,1.0295,0.2275,0.189,0.108,0.062
124,91261,283.8666666666667,305.2,12.0,3.9558676531058126,3.270066258248192,0.6055300708194983,0.4995,1.028,0.21,0.18,0.1075,0.062
125,91260,272.625,295.075,12.675,4.542507567412518,4.027328519006116,0.7545694136393286,0.492,1.0325000000000002,0.2105,0.1795,0.107,0.061
126,91259,282.875,303.90625,12.296875,5.993486047368426,5.713795668161402,0.44824963399315787,0.489,1.022,0.2145,0.182,0.107,0.0635
127,91258,290.28,310.88,12.17,4.308317537043898,4.0281012896897215,0.7785242449660769,0.4875,1.0105,0.2175,0.18,0.11,0.0645
128,91257,288.75,309.875,11.984375,4.630064794363034,3.9191038516477206,0.5075119302784911,0.5,1.0150000000000001,0.232,0.181,0.1085,0.0645
129,91182,287.6388888888889,308.55555555555554,12.416666666666666,3.207220826837274,3.1573938307517375,0.6718548123582125,0.5015000000000001,1.0355,0.2255,0.181,0.1115,0.0625
130,91181,285.88235294117646,306.79411764705884,12.044117647058824,3.2062870764497986,2.99783659018521,0.7211882256023074,0.4955,1.0115,0.214,0.182,0.106,0.061
131,91180,286.46875,306.84375,11.78125,3.372539612443418,3.083315737562405,0.5986638768958755,0.504,1.0295,0.2155,0.185,0.103,0.063
132,91179,280.13157894736844,302.0263157894737,11.907894736842104,3.819417512985999,3.54287158364112,0.616177340735163,0.4945,1.0230000000000001,0.20550000000000002,0.1785,0.1085,0.062
133,91178,282.88235294117646,304.11764705882354,11.941176470588236,3.931507014472223,3.603631386469789,0.6389870877176598,0.4985,1.0405000000000002,0.212,0.1805,0.1125,0.0635
134,91177,285.2647058823529,305.97058823529414,11.632352941176471,4.053385103323857,3.929416167662204,0.48973017074549147,0.506,1.0230000000000001,0.2235,0.1845,0.1015,0.0595
135,91176,285.2368421052632,306.0,11.631578947368421,3.936564161311471,3.35606285619576,0.6143482910488816,0.4985,1.0155,0.215,0.1765,0.1075,0.0655
136,91175,283.0,304.44117647058823,12.382352941176471,4.734106537234069,4.271596866792037,0.9079617082607724,0.504,1.0115,0.216,0.183,0.111,0.0645
137,91174,281.05882352941177,302.44117647058823,12.411764705882353,4.072440924863759,3.566108246770092,0.6355936113227738,0.503,1.0260000000000002,0.2055,0.181,0.102,0.0615
138,91104,272.52,294.14,12.25,4.699957446615874,4.17137866897744,0.5937171043518958,0.499,1.0205000000000002,0.213,0.1785,0.108,0.0635
139,91103,281.0,302.43333333333334,12.016666666666667,3.4737107920301407,3.169472441204617,0.507991688470939,0.4965,1.0425,0.21,0.181,0.105,0.0615
140,91102,279.46875,300.65625,11.828125,4.6903116567558705,4.16540345434869,0.5810735619308454,0.4985,1.0125000000000002,0.20350000000000001,0.18,0.104,0.063
141,91101,274.35185185185185,297.0,11.787037037037036,4.199459433499469,4.303314829119352,0.6426352851652086,0.501,1.008,0.2075,0.1815,0.1075,0.0605
142,91100,276.7586206896552,298.9655172413793,11.689655172413794,3.743087167803982,3.55724378601622,0.5859532919988424,0.51,1.0175,0.20750000000000002,0.182,0.105,0.062
143,91099,277.29411764705884,297.97058823529414,11.955882352941176,2.5382881188695783,2.4791518250454723,0.573529411764706,0.508,1.013,0.222,0.185,0.107,0.0615
144,91098,275.9375,296.90625,12.21875,3.3441880554179364,3.146023035119101,0.5294085733155443,0.5105,1.0140000000000002,0.2285,0.187,0.105,0.061
145,91097,281.0625,301.1875,11.734375,4.5065057139650895,3.972070461358912,0.5992752784614096,0.5105,1.055,0.2175,0.1845,0.102,0.062
146,91096,278.84375,299.4375,11.8125,3.945799784264275,3.823753881985607,0.6343057228182637,0.5035000000000001,1.0415,0.2105,0.178,0.1085,0.063
147,91095,278.03125,299.15625,11.703125,3.820048878941211,3.8087840497329326,0.5282544220117802,0.5165,1.025,0.225,0.1865,0.112,0.0645
148,91094,278.84375,299.65625,11.71875,3.042504878796417,2.8789035998970163,0.7281987623581903,0.506,1.0105,0.215,0.1795,0.1115,0.0605
149,91092,278.52941176470586,299.0,11.808823529411764,3.1081987796759782,2.733237683644457,0.5287986645989765,0.4985,1.0255,0.212,0.181,0.1055,0.0645
150,91091,281.39285714285717,302.9642857142857,12.071428571428571,3.4675978275857697,2.957824283116886,0.6906814144933471,0.507,1.0375,0.2275,0.1835,0.113,0.061
151,91090,280.4117647058824,301.02941176470586,12.176470588235293,3.606510836698666,2.994949612830073,0.6049107000353863,0.505,1.0270000000000001,0.214,0.1875,0.1165,0.062
152,91089,281.73333333333335,302.0,11.833333333333334,5.744175794276805,5.278888771954441,0.6368324391514265,0.5045,1.0195,0.20450000000000002,0.189,0.109,0.061
153,91088,282.21875,302.625,11.96875,3.5596205468420368,2.923503890881625,0.6487668591258342,0.5245,1.0265,0.228,0.1965,0.105,0.0605
154,90986,281.02777777777777,302.05555555555554,12.055555555555555,4.769615120223196,4.047938051543749,0.6538112386633235,0.49,1.0230000000000001,0.2015,0.1805,0.102,0.0625
155,90985,278.0882352941176,299.1470588235294,12.088235294117647,3.973201754244402,3.5157825080056666,0.669400392749473,0.4955,1.0215,0.21050000000000002,0.183,0.109,0.0605
156,90984,278.53333333333336,299.7,12.033333333333333,4.201058067783507,3.8397048497681876,0.5763872155263529,0.493,1.0235,0.2025,0.1785,0.1045,0.0635
157,90983,275.84375,297.875,12.28125,3.9537116659539047,3.6890886408434267,1.0601997158554608,0.4925,1.013,0.213,0.1785,0.101,0.0615
158,90982,286.73295454545456,307.96022727272725,10.801136363636363,11.30276737624774,9.209901289727753,1.9365500203725592,0.491,1.0260000000000002,0.216,0.1785,0.105,0.0655
159,90977,279.82142857142856,300.85714285714283,12.267857142857142,3.6258355827959696,3.2372197696070457,0.49066541657264584,0.5035000000000001,1.024,0.226,0.189,0.1115,0.067
160,90976,276.20588235294116,298.47058823529414,12.058823529411764,4.464101330843816,3.7748026369728107,0.6034789567259763,0.4945,1.0300000000000002,0.20450000000000002,0.1785,0.109,0.064
161,90975,278.0,299.1666666666667,12.0,4.835385442852759,4.439630329241103,0.5976143046671968,0.5055000000000001,1.044,0.2175,0.183,0.107,0.061
162,90974,279.75,300.64285714285717,11.892857142857142,5.025826158098644,4.0285967577724495,0.6860490254392339,0.4845,1.0285000000000002,0.2105,0.1725,0.1005,0.065
163,90973,281.46875,302.40625,11.703125,2.8721113205271136,2.3165083504058432,0.6943901888527804,0.498,1.0180000000000002,0.208,0.1855,0.1055,0.0605
164,90972,279.38235294117646,300.2647058823529,11.882352941176471,3.4129054887928745,3.2837283645755995,0.5294117647058824,0.4935,1.0235,0.20400000000000001,0.1765,0.105,0.0635
165,90971,282.11764705882354,302.3529411764706,11.676470588235293,4.470588235294118,4.645569381560535,0.5672735741760562,0.4985,1.0175,0.2065,0.178,0.1045,0.068
166,90970,281.8235294117647,301.55882352941177,11.955882352941176,3.8916999781230803,3.448709703050832,0.5862097478821985,0.501,1.001,0.212,0.1785,0.106,0.065
167,90969,279.9642857142857,300.75,12.017857142857142,3.2566650652068563,2.694239887506042,0.4721180023715102,0.4925,1.0335,0.2065,0.1785,0.102,0.0605
168,90968,279.5,299.73333333333335,11.9,5.264662065761359,4.138706185378335,0.4898979485566356,0.5125,1.0260000000000002,0.218,0.188,0.106,0.059
169,90967,277.43333333333334,297.73333333333335,11.9,4.038839217178895,3.6508750853581513,0.5385164807134504,0.493,1.0150000000000001,0.2025,0.1765,0.106,0.0655
170,90966,278.5625,299.4375,11.90625,4.534158549279017,4.038389994787527,0.5367363761661771,0.4915,1.02,0.205,0.1755,0.107,0.0635
171,90959,283.1,303.1333333333333,11.833333333333334,5.821511831131154,5.136362742468859,0.7110243002567179,0.498,1.0375,0.207,0.1805,0.112,0.062
172,90957,281.57142857142856,301.9642857142857,11.964285714285714,3.133101742780187,2.8218806147818576,0.5658206970626735,0.486,1.0215,0.199,0.178,0.1045,0.0605
173,90956,279.2352941176471,300.20588235294116,11.955882352941176,4.208246970004687,3.779039807743775,0.6682686922059862,0.494,1.0125000000000002,0.2155,0.181,0.1065,0.065
174,90955,279.5,299.56666666666666,11.916666666666666,3.9728243521874123,3.373260868786891,0.5489889697333534,0.508,1.0125000000000002,0.2215,0.1805,0.108,0.0655
175,90954,279.5,300.6,12.083333333333334,3.3541019662496847,3.2103997674225346,0.7312470322826767,0.5045,1.024,0.21,0.181,0.1035,0.0605
176,90914,282.2142857142857,302.10714285714283,12.321428571428571,4.0739340661712,3.5490369489913913,0.46702488680792925,0.4905,1.021,0.2095,0.1795,0.109,0.065
177,90913,281.14285714285717,301.7857142857143,12.071428571428571,3.562846832382836,2.9923371522362014,0.5297284633639759,0.501,1.021,0.2075,0.1795,0.109,0.0635
178,90912,281.0833333333333,301.8611111111111,12.0,3.5227435646413756,3.207220826837274,0.754615428178118,0.49,1.0185,0.216,0.1825,0.1065,0.0665
179,90911,280.10714285714283,300.57142857142856,12.285714285714286,2.5958660227683676,2.0429070922964416,0.6468132241526726,0.49,1.0220000000000002,0.226,0.1795,0.105,0.0635
180,90910,277.2692307692308,298.5,12.442307692307692,4.090868746439039,3.6611263504345426,0.5248978486136993,0.497,1.0135,0.22,0.1805,0.106,0.0635
181,90909,275.39285714285717,297.4642857142857,12.25,5.150168414127595,4.435909818556657,0.5428101483418094,0.5005,1.0095,0.2215,0.186,0.106,0.0645
182,90908,277.5,298.4375,12.40625,4.183300132670378,3.7578043788893534,0.9717694878416383,0.498,1.02,0.216,0.1795,0.1085,0.0635
183,90907,277.25,298.59375,11.90625,2.704163456597992,2.3698546237058506,0.8046495743489833,0.485,1.0055,0.208,0.176,0.1055,0.063
184,90906,278.6666666666667,299.46666666666664,11.516666666666667,3.2386554137309647,2.837056377460428,0.6767980168082317,0.4905,1.0225,0.2105,0.179,0.103,0.063
185,90905,275.1111111111111,296.77777777777777,11.875,3.6115384362544463,3.206859931035958,0.81967981553775,0.4975,1.0260000000000002,0.22,0.1785,0.104,0.0625
186,90904,271.2741935483871,293.741935483871,11.53225806451613,7.616131764833984,6.478090827553379,0.8513318206707513,0.4985,1.0165000000000002,0.2105,0.184,0.1055,0.0615
187,90903,277.4,298.1666666666667,11.683333333333334,2.244994432064365,2.252159457547849,0.7357913351548039,0.4995,1.018,0.2285,0.18,0.108,0.0635
188,90902,279.10714285714283,299.7142857142857,11.714285714285714,2.8452879055213587,2.8642768079662027,0.6328587552381911,0.492,1.0315,0.2105,0.1785,0.106,0.0665
189,90884,279.65625,300.5625,11.84375,6.420715375836247,5.459724695440238,0.5510997527671374,0.5125,1.0335,0.214,0.1825,0.1065,0.0645
190,90883,276.88235294117646,298.61764705882354,12.294117647058824,4.164024537154021,3.9779887460458987,0.7287948054919922,0.4915,1.0015,0.2095,0.181,0.103,0.067
191,90882,279.125,300.28125,11.421875,3.6721077053920954,3.144781143020926,0.9363273916611646,0.51,1.0265,0.2145,0.1845,0.105,0.06
192,90881,281.96875,302.78125,11.671875,5.156818150516847,4.890899552996361,0.7563210193925592,0.5055000000000001,1.0245000000000002,0.225,0.184,0.107,0.0615
193,90880,281.21875,301.5625,11.453125,4.735071112190397,4.344087217126286,0.9130937708554363,0.514,1.0295,0.226,0.1845,0.1035,0.062
194,90872,281.2,301.6,11.15,4.085747585611883,3.6660605559646715,0.6601767440112788,0.502,1.014,0.2175,0.178,0.103,0.063
195,90871,284.09375,304.21875,11.296875,3.987162015456608,3.407109983182228,0.9425644457409795,0.505,1.0165000000000002,0.212,0.1815,0.1035,0.0645
196,90870,282.7368421052632,303.1842105263158,11.5,4.209539358011539,3.267505592617086,0.7254762501100116,0.5015000000000001,1.0205000000000002,0.2155,0.1825,0.106,0.0635
197,90869,282.52941176470586,302.47058823529414,11.720588235294118,4.278780022098431,3.7825862154759475,0.7090919677200702,0.4965,1.0185,0.2305,0.187,0.1085,0.0645
198,90814,282.1470588235294,302.7647058823529,11.602941176470589,4.109761356612388,3.481538060460633,0.8726178646556939,0.504,1.0215,0.222,0.182,0.116,0.061
199,90813,280.55882352941177,301.88235294117646,11.5,4.052531354674858,3.3934600239661075,0.6966305460192359,0.5085,1.0434999999999999,0.208,0.1795,0.1095,0.0615
200,90812,277.5625,298.875,11.546875,3.715991624048687,3.2282928925362393,0.6417672743097765,0.5035000000000001,1.0260000000000002,0.2125,0.1785,0.1075,0.0615
201,90811,274.5,295.7692307692308,11.846153846153847,4.634735076654245,4.050714014055872,0.6617173282340482,0.5045,1.0594999999999999,0.227,0.18,0.1045,0.06
202,90779,280.6111111111111,301.5740740740741,11.648148148148149,4.244458987758679,3.572538530242688,0.7554102983100421,0.5025,1.014,0.21,0.1795,0.104,0.067
203,90778,282.609756097561,302.9512195121951,11.512195121951219,4.611110912020076,3.9844283460111725,0.6851010685457629,0.51,1.0325,0.218,0.185,0.107,0.0625
204,90777,279.53333333333336,300.8333333333333,11.583333333333334,3.1276544281973067,2.8294090470548006,0.7536946036396676,0.4845,1.0135,0.212,0.177,0.103,0.0635
205,90776,280.0625,301.15625,11.359375,3.1911743528049357,2.658822283925723,0.6153552708598505,0.4945,1.0305,0.215,0.177,0.103,0.061
206,90775,276.375,298.375,11.6875,4.036938815488786,3.524468044967921,0.7368641326594747,0.5065,1.0135,0.219,0.1795,0.105,0.0655
207,90773,270.29411764705884,294.4117647058824,11.426470588235293,3.0824876486056234,2.5909077112406167,0.7389614427294773,0.499,1.017,0.2045,0.178,0.1035,0.063
208,90772,267.85714285714283,291.98214285714283,11.732142857142858,3.9929785312496247,3.3567153983181424,0.7497873848291792,0.498,1.028,0.203,0.1805,0.1105,0.0625
209,90771,273.40625,295.90625,10.90625,3.6129919647710262,3.2148034057310566,0.5650981662507851,0.507,1.018,0.211,0.183,0.11,0.063
210,90770,269.97222222222223,293.90277777777777,11.916666666666666,4.291374495628224,3.5907277280913337,0.7949493345141213,0.498,1.029,0.2095,0.1785,0.111,0.0625
211,90769,281.7692307692308,303.34615384615387,11.576923076923077,7.8901481525901955,6.145306574891792,0.7164590773152753,0.51,1.03,0.2155,0.182,0.1105,0.0635
212,90768,273.13,295.71,12.055,12.730007855457119,10.102766947722788,0.6437973283573023,0.494,1.02,0.208,0.1795,0.107,0.063
213,90767,277.20567375886526,299.1276595744681,11.647163120567376,6.280124824273825,5.436090407597307,0.8611857455191054,0.5105,1.0155,0.222,0.179,0.105,0.061
214,90720,282.3076923076923,303.38461538461536,11.346153846153847,3.0098457763867463,2.646869312936193,0.5845647751373332,0.5145,1.001,0.2255,0.19,0.1065,0.063
215,90719,281.92857142857144,303.14285714285717,11.107142857142858,3.3373275389210475,2.8121456692899325,0.631850214748362,0.5135000000000001,1.0405000000000002,0.2145,0.1805,0.1115,0.063
216,90718,282.625,302.6875,11.125,3.9031237489989987,3.1764514398932655,0.57282196186948,0.5,1.008,0.20600000000000002,0.184,0.114,0.063
217,90717,283.53125,303.75,10.921875,4.756471742531432,4.205650960315181,0.45258588618625745,0.4965,1.004,0.2075,0.179,0.115,0.063
218,90716,284.3076923076923,305.0769230769231,10.384615384615385,3.6243750736583835,3.384615384615384,0.737820234355803,0.5265,1.0175,0.228,0.1935,0.1055,0.063
219,90715,285.46153846153845,305.8076923076923,10.634615384615385,2.911922035499646,2.717737050296848,0.8939722537822662,0.51,1.0295,0.2165,0.189,0.101,0.0625
220,90590,283.9,304.93333333333334,11.166666666666666,2.4812631191928567,2.682453271830761,0.6497862896539309,0.5115000000000001,1.013,0.2135,0.1875,0.1035,0.064
221,90589,286.7,307.46666666666664,11.4,3.1533051443419384,2.66749986983234,0.6633249580710799,0.504,1.0270000000000001,0.20500000000000002,0.186,0.105,0.0615
222,90588,286.23333333333335,306.3666666666667,11.066666666666666,4.047083998249714,3.371283962462307,0.9637888196533974,0.5045,1.02,0.2175,0.1885,0.1065,0.063
223,90587,285.90625,306.34375,11.359375,3.22450941035997,2.7111964033429965,0.7928821535228296,0.5125,1.0055,0.224,0.196,0.1075,0.0605
224,90575,281.8235294117647,302.8529411764706,11.220588235294118,2.7382968970135018,2.691297007908099,0.5449119798132032,0.51,1.021,0.2165,0.1835,0.107,0.0595
225,90574,281.20588235294116,301.8529411764706,11.632352941176471,3.611903618712029,3.2004811489485583,0.6220084112516646,0.5055000000000001,1.0325,0.208,0.183,0.1085,0.061
226,90573,282.9230769230769,304.3076923076923,11.192307692307692,3.0874818831368427,3.207793763383545,0.7081520245969989,0.4995,1.0434999999999999,0.214,0.1805,0.1095,0.0665
227,90572,282.06666666666666,303.6666666666667,11.233333333333333,3.2242139438249997,2.796823595120404,0.6018490028422596,0.514,1.0275,0.212,0.183,0.107,0.0645
228,90526,281.88235294117646,303.3529411764706,11.529411764705882,3.3410521932148067,2.8063201039709558,0.73705671094951,0.5025,1.0035,0.2135,0.181,0.109,0.0665
229,90524,279.1333333333333,300.73333333333335,11.766666666666667,4.185158964191869,3.9066894197289637,0.7498147919467996,0.4935,1.0085000000000002,0.208,0.1755,0.113,0.067
230,90523,280.8666666666667,302.3666666666667,11.666666666666666,2.741451359326945,2.8458546851321995,0.5374838498865698,0.498,1.0105,0.213,0.178,0.1105,0.067
231,90522,280.15625,300.375,11.796875,4.479881241450492,4.49131105580542,0.6715115295920093,0.498,1.004,0.222,0.184,0.112,0.065
232,90391,283.43333333333334,304.43333333333334,11.783333333333333,4.271481658108291,4.506908277547062,0.6413960468297951,0.5165,1.0115,0.2235,0.1815,0.11,0.0655
233,90390,257.6818181818182,281.59090909090907,12.522727272727273,4.948703812261106,5.078108908111821,0.4641040421968668,0.5035000000000001,1.0065,0.2265,0.184,0.1015,0.062
234,90389,278.625,300.5833333333333,11.854166666666666,4.7064893144111855,4.241822197541471,0.6689414315834301,0.502,1.0165000000000002,0.225,0.179,0.1005,0.0635
235,90388,280.52941176470586,301.5,11.529411764705882,4.545426234576824,3.5334535680615726,0.6294392517362557,0.491,1.013,0.20500000000000002,0.1755,0.107,0.067
236,90387,279.21875,300.15625,12.109375,5.242461105005931,4.816049827140496,0.5552923638724019,0.5035000000000001,1.0270000000000001,0.208,0.1815,0.105,0.0645
237,90386,278.625,299.4375,11.96875,3.370367190678191,3.44544536308443,0.7493486755176124,0.497,1.0150000000000001,0.20450000000000002,0.178,0.1065,0.0635
238,90385,283.32142857142856,304.5,11.767857142857142,3.546160614247586,2.8598201741668006,0.7131687695612806,0.505,1.0235,0.213,0.183,0.106,0.0655
239,90384,278.40625,299.40625,11.796875,3.9199758848110275,3.5519305930015017,0.7055513690547273,0.499,1.0075,0.206,0.1905,0.107,0.065
240,90383,281.61764705882354,302.2647058823529,11.794117647058824,3.325611008719282,3.3282111740959532,0.676470588235294,0.5035000000000001,1.0145,0.21,0.181,0.106,0.0645
241,90382,280.39285714285717,301.67857142857144,11.910714285714286,3.8204271050899696,3.5762467499218413,0.7077828993788005,0.504,1.0150000000000001,0.21,0.181,0.106,0.065
242,90381,281.59375,302.6875,11.5,3.2773786686161244,3.3951942138852678,0.8660254037844386,0.4845,1.0165000000000002,0.2015,0.18,0.1065,0.0645
243,90380,283.25,304.07142857142856,11.839285714285714,3.077858717633785,3.150153867314278,0.7202872867892394,0.49,1.012,0.2115,0.182,0.1085,0.067
244,90379,283.3125,303.78125,11.578125,4.034519023378127,3.926945178825393,0.5743117484215345,0.5,1.001,0.2135,0.178,0.1145,0.0645
245,90378,284.2083333333333,304.875,12.229166666666666,4.193041524027901,3.822221212855164,0.6766825737046548,0.52,1.012,0.2275,0.188,0.111,0.063
246,90377,283.53125,304.6875,11.578125,3.041220715025465,3.06632414300902,0.8848496959229856,0.5005,1.0140000000000002,0.207,0.18,0.109,0.065
247,90204,284.7826086956522,306.0217391304348,12.141304347826088,3.1271117628437413,2.892938407156165,0.6648229862336099,0.5075000000000001,1.0145,0.212,0.1865,0.107,0.0625
248,90203,281.07142857142856,302.35714285714283,12.25,3.7505101693785936,3.4039293021268153,0.57476703355111,0.508,1.0310000000000001,0.213,0.181,0.105,0.0645
249,90202,285.8125,306.84375,12.328125,2.4803918541230536,2.5993914552256263,0.7353716641093808,0.508,1.0345,0.2105,0.182,0.104,0.0645
250,90094,279.9,301.5,11.033333333333333,4.109744517606903,3.6765019606504588,0.835995746932297,0.508,1.0185,0.20400000000000001,0.179,0.1035,0.0615
251,90093,281.78125,303.65625,11.984375,3.048917584569973,3.0270589583785776,0.9394510947223383,0.521,1.016,0.2185,0.185,0.104,0.0665
252,90092,285.1666666666667,306.5,11.583333333333334,3.3968940061310255,2.8838631497813254,0.5335936864527374,0.5105,1.028,0.2065,0.1825,0.106,0.062
253,90091,283.3125,304.34375,11.8125,4.318835925339141,3.981279434742053,0.6584783595532961,0.503,1.0175,0.2105,0.1815,0.11,0.0645
254,90090,277.1,300.43333333333334,11.866666666666667,2.890789972769842,2.740843341422895,0.5906681715556449,0.5015000000000001,1.0185,0.209,0.1805,0.104,0.062
255,90089,276.8125,299.9375,11.859375,3.3113205447374012,3.020114857087392,0.6523320545358782,0.5015000000000001,1.0115,0.2125,0.1775,0.1035,0.062
256,90088,275.42857142857144,298.92857142857144,11.678571428571429,4.15269767249961,3.206339383923349,0.7222767291484531,0.5015000000000001,1.0110000000000001,0.213,0.1805,0.1055,0.061
257,90087,280.78125,303.09375,12.171875,3.620552228251928,2.6499926297067318,0.7138077362812763,0.5045,1.0290000000000001,0.2175,0.188,0.102,0.061
258,90086,280.6333333333333,302.8666666666667,12.366666666666667,3.68314479155457,2.985892756874492,0.6046119049072349,0.5075000000000001,1.0190000000000001,0.2115,0.1805,0.104,0.0625
259,90085,280.5357142857143,303.25,11.785714285714286,4.625103418590017,4.22260075579697,0.8283866789102287,0.51,1.0250000000000001,0.212,0.1895,0.105,0.062
260,90084,282.2631578947368,305.07894736842104,11.75,4.326687139908339,3.949560794685167,0.5932737009260788,0.5255000000000001,1.0185,0.218,0.1895,0.1035,0.062
261,90083,281.15384615384613,304.11538461538464,11.557692307692308,4.6549585447406985,4.022312032008486,0.6252218541157253,0.4905,1.0305,0.2145,0.1745,0.11,0.063
262,90050,282.7307692307692,304.88461538461536,11.653846153846153,2.903018221248259,2.8866659378401223,0.7039617391431972,0.4965,1.0215,0.208,0.182,0.107,0.0625
263,90048,282.2142857142857,305.32142857142856,11.553571428571429,3.5592650009431406,3.3386649537606177,0.6858165846311257,0.507,1.0285000000000002,0.22,0.187,0.1115,0.0615
264,90047,280.7352941176471,303.55882352941177,11.455882352941176,2.842004507276011,2.158310565759686,0.6458879781175808,0.4975,1.0090000000000001,0.23299999999999998,0.1885,0.1025,0.0625
265,90020,277.71875,300.53125,11.203125,4.570519493175803,3.6995301644262883,0.6478253888008713,0.5025,1.0255,0.2085,0.1905,0.107,0.063
266,90019,283.3666666666667,305.1666666666667,11.3,4.408199430858615,3.899430157799413,0.5567764362830022,0.492,1.014,0.2085,0.181,0.109,0.064
267,90018,276.60526315789474,299.7631578947368,11.710526315789474,3.039559123884585,2.90583995037141,0.5456958250875715,0.4955,1.0115,0.212,0.177,0.12,0.0645
268,90017,272.8333333333333,296.5,11.375,4.412734098291242,3.8297084310253524,0.8690272339422588,0.5085,1.0105,0.2125,0.183,0.11,0.061
269,90016,277.17857142857144,300.2142857142857,11.339285714285714,4.758853188896396,3.9853046384466633,0.5009557192537692,0.4965,1.0105,0.2055,0.1775,0.1055,0.0645
1 熔炼号 屈服均值 抗拉均值 延伸率均值 屈服标准差 抗拉标准差 延伸率标准差 E1 E2 E3 E4 E5 E6
2 0 90623 284.11764705882354 304.4117647058824 11.558823529411764 4.042165304143407 3.5323517167064535 0.5657465900491572 0.4965 1.026 0.2155 0.1825 0.107 0.062
3 1 90622 280.8333333333333 301.23333333333335 11.733333333333333 4.8654107968620925 4.19271855588816 0.7039570693980959 0.499 1.0325000000000002 0.222 0.184 0.105 0.0625
4 2 90621 279.0 300.8125 11.328125 4.183300132670378 3.3859775176453843 0.7866997421983816 0.4935 1.02 0.229 0.1845 0.102 0.0605
5 3 90620 283.0882352941176 303.79411764705884 11.558823529411764 5.232071050172048 4.350655202615064 0.6834676493307206 0.4915 1.0165000000000002 0.2125 0.18 0.104 0.062
6 4 90619 283.0 304.4 11.5 3.3466401061363023 2.823709144606316 0.6454972243679028 0.4945 1.024 0.2175 0.186 0.1155 0.0625
7 5 90618 281.4375 302.71875 11.390625 4.379907961361745 4.207392118343618 0.8075268474639093 0.494 1.0265 0.205 0.1785 0.106 0.062
8 6 90617 280.90625 301.40625 11.703125 3.9793166420253616 3.9039993516264833 0.7273601132692114 0.499 1.0325000000000002 0.216 0.1845 0.108 0.062
9 7 90616 283.46666666666664 304.3666666666667 11.516666666666667 4.432706722634478 4.061882431692095 0.664371047599825 0.505 1.0315 0.218 0.1835 0.1065 0.066
10 8 90615 282.11538461538464 303.03846153846155 11.923076923076923 4.885826621478492 4.228845716584439 0.7806839665455554 0.504 1.0350000000000001 0.2275 0.184 0.1055 0.06
11 9 90614 282.7857142857143 304.0357142857143 11.75 4.047549019002054 3.390976922628038 0.6813851438692469 0.5025 1.0085000000000002 0.2235 0.185 0.1075 0.064
12 10 90605 280.27777777777777 301.8611111111111 11.694444444444445 4.413433477659813 4.007997406420886 0.8841016923799748 0.4975 1.0190000000000001 0.2145 0.1835 0.11 0.062
13 11 90604 282.6333333333333 304.0 11.5 4.423296910174079 3.7327380477785117 0.5322906474223771 0.4905 1.0350000000000001 0.2235 0.181 0.11 0.061
14 12 90603 286.34375 307.0625 11.5 2.8018897083040226 2.164161211647598 0.8660254037844386 0.5015000000000001 1.021 0.2065 0.1845 0.106 0.0605
15 13 90602 284.8333333333333 305.26666666666665 11.133333333333333 3.194613522095522 2.4073960113690385 0.6574360974438672 0.5 1.0225 0.2225 0.182 0.1065 0.065
16 14 90601 282.25 304.09375 11.015625 3.5089172119045497 3.1658270542624405 0.7124383196986248 0.491 1.0125000000000002 0.2075 0.1805 0.1025 0.0625
17 15 90600 280.625 301.53125 11.3125 3.7645550865938993 3.1916333494779754 0.6584783595532961 0.4975 1.0225 0.212 0.1805 0.106 0.063
18 16 90599 281.84375 303.34375 11.375 3.6836579560947293 3.1485053497651867 0.5448623679425842 0.502 1.026 0.211 0.1795 0.104 0.0615
19 17 90598 283.75 304.65625 11.03125 4.205650960315181 3.4965105373071594 0.63661089960823 0.4965 1.0405 0.2055 0.181 0.1075 0.061
20 18 90594 284.7916666666667 305.4583333333333 11.0625 2.8719790892151162 2.7230370095824177 0.6969053618199055 0.507 1.0260000000000002 0.2285 0.184 0.108 0.0625
21 19 90586 282.265625 302.8125 11.2265625 3.4060708095069017 3.2106998847603307 0.5924636559264627 0.5055000000000001 1.0165000000000002 0.214 0.1835 0.1065 0.0625
22 20 90585 282.80357142857144 303.73214285714283 11.348214285714286 3.8425235516386835 3.583150406658182 0.5663136029964101 0.509 1.0335 0.219 0.1835 0.1055 0.063
23 21 90584 285.6666666666667 305.93333333333334 11.283333333333333 3.080404013906112 2.2939534045447 0.6011562932290476 0.503 1.016 0.213 0.1815 0.1065 0.0635
24 22 90583 283.7857142857143 303.5 11.142857142857142 4.639559268301423 3.385895112711809 0.4791574237499549 0.4905 1.0155 0.2105 0.1785 0.107 0.0615
25 23 90582 284.93333333333334 304.96666666666664 11.05 4.024370206076419 3.420363853289426 0.6103277807866851 0.4995 1.0170000000000001 0.214 0.1825 0.1065 0.0625
26 24 90581 285.19444444444446 304.75 11.291666666666666 4.788988784727619 3.960744879438715 0.616610357789531 0.503 1.0305 0.215 0.1845 0.11 0.0605
27 25 90580 284.11290322580646 304.7258064516129 11.46774193548387 3.844161214393545 3.6152426181856008 0.6890325601062525 0.4985 1.0230000000000001 0.215 0.18 0.1065 0.06
28 26 90579 285.15625 305.328125 11.4921875 4.531896505603366 4.031340841999719 0.8267603732906833 0.492 1.022 0.21 0.178 0.1065 0.0615
29 27 90578 285.66129032258067 305.6774193548387 11.137096774193548 4.204235761118498 3.3106582210188327 0.7359947998956685 0.497 1.0195 0.217 0.1785 0.106 0.062
30 28 90577 282.328125 303.125 11.4140625 5.25313801307133 3.9941363271676145 0.8364484419817817 0.4945 1.0265 0.209 0.1765 0.102 0.0625
31 29 90576 283.7 304.0833333333333 11.191666666666666 5.317580903631525 4.005378328642072 0.6957709552878893 0.484 1.016 0.211 0.182 0.103 0.0595
32 30 90521 284.741935483871 304.38709677419354 11.75 3.8768772096964175 3.1384958319884615 0.7113707803225926 0.51 1.0145 0.2095 0.1845 0.1045 0.063
33 31 90520 280.6969696969697 301.07575757575756 11.477272727272727 5.485434423750187 4.6033933664944415 0.9021515451787021 0.502 1.0265 0.2135 0.177 0.104 0.0665
34 32 90519 282.5833333333333 303.34722222222223 11.25 5.392252672945593 4.0316791450207266 0.9090593428863095 0.502 1.0305 0.214 0.1835 0.1045 0.0605
35 33 90518 279.41379310344826 300.2241379310345 11.887931034482758 4.916665826934502 4.242815848679108 0.7134369426276063 0.496 1.0190000000000001 0.213 0.1795 0.105 0.064
36 34 90517 281.25 302.2142857142857 12.375 3.77609965062213 3.016113190102488 0.6764534616027075 0.5015000000000001 1.0185 0.2065 0.182 0.106 0.064
37 35 90516 280.93548387096774 301.9193548387097 11.403225806451612 5.312404739918411 4.116443763879967 0.9912468105038357 0.4935 1.0155 0.2105 0.1795 0.106 0.064
38 36 90515 282.8 303.3666666666667 11.741666666666667 4.534313619501853 3.9241418028517887 0.7554891719203453 0.4935 1.021 0.2115 0.1775 0.102 0.0625
39 37 90514 286.46875 306.53125 11.65625 3.1818270596467055 3.082048578056485 0.8143008887997114 0.4935 1.0305 0.2115 0.1865 0.105 0.062
40 38 90513 284.9117647058824 305.3529411764706 11.279411764705882 3.575798117893514 3.3332756627075737 0.7494230768377003 0.497 1.0075 0.208 0.1825 0.101 0.061
41 39 90512 283.56666666666666 303.6333333333333 11.45 4.200661323596031 3.6192387167592153 0.8301606270274848 0.5185 1.025 0.218 0.1865 0.104 0.0615
42 40 90511 279.52941176470586 300.44117647058823 11.279411764705882 4.153207790142083 3.623381394990598 0.8330593551922675 0.5005 1.0365000000000002 0.2255 0.179 0.1055 0.0595
43 41 90510 284.1666666666667 304.73333333333335 10.983333333333333 4.705198071164369 4.501357819838613 0.5842849380986034 0.5045 1.029 0.22 0.1835 0.1045 0.06
44 42 90509 281.27272727272725 301.1818181818182 11.477272727272727 4.564505531139343 3.8921408415650265 1.0920921615212693 0.505 1.0220000000000002 0.212 0.179 0.101 0.0645
45 43 90468 280.23333333333335 301.6333333333333 11.333333333333334 3.809491071287899 3.08202675019035 0.5055250296034367 0.5155000000000001 1.0315 0.2355 0.1825 0.109 0.062
46 44 90467 282.06666666666666 302.76666666666665 11.316666666666666 3.0652170486860397 2.603629944690468 0.6767980168082319 0.504 1.012 0.2285 0.1835 0.111 0.0615
47 45 90466 283.3235294117647 303.29411764705884 11.426470588235293 3.878451694072339 3.468593644189545 0.6874115230894261 0.5 1.0315 0.219 0.1855 0.1065 0.0615
48 46 90465 283.13157894736844 303.2631578947368 11.763157894736842 3.333806522277176 2.9171382022212673 0.7586071213368198 0.503 1.0205000000000002 0.213 0.179 0.101 0.061
49 47 90435 280.59375 300.875 12.015625 3.6730383795299497 3.266783586342995 0.5517638619690493 0.496 1.0195 0.208 0.182 0.1065 0.066
50 48 90434 281.875 302.21875 12.015625 4.648588495446763 4.067664985897929 0.7953416620390258 0.4945 1.0225 0.2135 0.177 0.105 0.064
51 49 90433 281.57142857142856 301.89285714285717 11.696428571428571 3.9859446938010588 3.26605141366983 0.6858165846311257 0.4905 1.0090000000000001 0.214 0.179 0.104 0.064
52 50 90432 283.2352941176471 303.1764705882353 11.147058823529411 3.933706705247174 3.6012300858856396 0.5494571085961589 0.501 1.004 0.2095 0.184 0.105 0.0625
53 51 90431 284.375 304.09375 11.765625 4.9355217555999085 3.947779241231708 0.7393448852700613 0.4955 1.0260000000000002 0.20500000000000002 0.1785 0.106 0.0615
54 52 90430 282.56666666666666 302.73333333333335 12.1 3.5466729323252926 2.9881246441353295 0.6879922480183431 0.4985 1.0235 0.22 0.1815 0.1095 0.0645
55 53 90429 283.1666666666667 303.2083333333333 11.9375 5.120763831912406 4.707964587330236 0.5460559342533815 0.494 1.0335 0.209 0.182 0.106 0.062
56 54 90322 282.06666666666666 302.8666666666667 11.816666666666666 2.2939534045447 2.526306042866189 0.6387922632245601 0.4945 1.0175 0.21 0.177 0.1035 0.0645
57 55 90321 284.0833333333333 303.8333333333333 12.041666666666666 3.6770685788183686 3.0046260628866577 0.5051814855409226 0.5095000000000001 1.034 0.215 0.185 0.108 0.0615
58 56 90320 286.43333333333334 305.6666666666667 11.65 4.7447046506839845 3.9015666369065416 0.5188127472091127 0.492 1.0245000000000002 0.2055 0.18 0.103 0.062
59 57 90319 287.625 307.03125 11.515625 4.985917668794783 3.892977451450239 0.40474480771839433 0.4955 1.042 0.2065 0.1785 0.105 0.064
60 58 90318 282.0882352941176 301.88235294117646 11.647058823529411 3.542744425199726 3.055994166555421 0.6362737544936452 0.4995 1.0265 0.2135 0.1795 0.105 0.0625
61 59 90317 284.4375 303.53125 11.984375 4.220022956098699 3.6484960514573674 0.7653060560161535 0.489 1.0295 0.205 0.1765 0.106 0.06
62 60 90316 286.9 306.26666666666665 11.85 4.019535628237006 3.5490217744549777 0.5346338310781814 0.496 1.0150000000000001 0.217 0.1805 0.109 0.066
63 61 90315 284.46666666666664 303.6333333333333 11.7 2.679966832298904 2.5623340054636823 0.49328828623162485 0.502 1.0155 0.2195 0.182 0.115 0.0635
64 62 90314 279.2 299.1666666666667 12.016666666666667 3.824482535803591 3.50317316474967 0.4913134324327892 0.4985 1.0245000000000002 0.226 0.181 0.109 0.062
65 63 90313 285.76666666666665 305.03333333333336 11.966666666666667 3.2525203902341473 2.869184940400709 0.7630348761506396 0.5025 1.0385 0.2195 0.182 0.1095 0.058499999999999996
66 64 90312 282.90625 302.59375 11.96875 3.5475288494246247 3.267829698362508 0.63661089960823 0.5 1.043 0.20800000000000002 0.181 0.1015 0.063
67 65 90221 285.0 304.25 11.90625 4.286607049870562 3.9210967853395307 0.7008644216251814 0.498 1.0225 0.20400000000000001 0.186 0.1075 0.063
68 66 90220 287.3125 305.65625 11.765625 2.877037321620976 2.7569160193049043 0.6729642333549384 0.497 1.0155 0.214 0.183 0.1075 0.061
69 67 90219 282.125 302.984375 12.1640625 4.625 4.033036183742343 0.7858846900746635 0.503 1.0170000000000001 0.221 0.185 0.1065 0.0645
70 68 90218 283.75 304.55102040816325 12.38265306122449 2.969874250069267 2.832473675435041 0.6577676393595143 0.5075000000000001 1.0265 0.2125 0.1905 0.101 0.061
71 69 90217 285.4516129032258 305.53225806451616 12.266129032258064 3.761766140434221 3.206433763823885 0.7657893984024035 0.4985 1.0230000000000001 0.208 0.179 0.105 0.063
72 70 90216 282.8 303.37142857142857 12.042857142857143 3.576111215911975 3.538245846951479 0.6477590885002648 0.4895 1.0305 0.214 0.18 0.1055 0.0625
73 71 90215 284.671875 305.1875 12.1171875 3.5840562194774512 3.4545034013588696 0.6774388089294486 0.4855 1.008 0.206 0.1825 0.105 0.064
74 72 90214 282.1774193548387 303.3709677419355 12.209677419354838 3.3045627964610427 2.846808461824268 0.6509818087293731 0.494 1.0110000000000001 0.218 0.184 0.1055 0.0655
75 73 90213 280.2413793103448 301.5344827586207 12.189655172413794 3.271139972271536 3.3590614311111664 0.7121336699332201 0.499 1.0315 0.2175 0.181 0.1115 0.0625
76 74 90212 281.04285714285714 301.95714285714286 12.242857142857142 3.8076453702132134 3.482346147912 0.6253162465211225 0.5005 1.0315 0.2135 0.182 0.1025 0.062
77 75 90211 281.6 302.26666666666665 11.875 3.0615900008546757 2.694851057521032 0.5746375669353104 0.5065 1.0275 0.224 0.1835 0.105 0.0625
78 76 90210 283.421875 303.734375 12.078125 3.8193777614128455 3.6879965237747987 0.697197234916347 0.489 1.0375 0.2205 0.1785 0.1075 0.062
79 77 90209 284.64516129032256 305.2258064516129 12.32258064516129 3.5880481448991826 3.390781405986559 0.6665799457990911 0.502 1.005 0.229 0.1825 0.1065 0.062
80 78 90208 283.48387096774195 303.9032258064516 12.419354838709678 3.4722026823360466 3.34427617617921 0.7306291388971693 0.4935 1.0135 0.218 0.18 0.109 0.063
81 79 90207 281.46875 302.484375 12.40625 3.5705774655509157 3.513332585932479 0.6724198372296879 0.5 1.0430000000000001 0.2195 0.1815 0.105 0.0615
82 80 90206 286.48333333333335 306.7 12.1 3.4082823957073876 3.3877229323937734 0.6506407098647712 0.5075000000000001 1.0350000000000001 0.2185 0.187 0.107 0.0605
83 81 90205 281.3225806451613 302.4516129032258 12.298387096774194 6.121812385940756 5.027913757552122 0.6504320984332004 0.497 1.0345 0.2145 0.181 0.106 0.061
84 82 90201 286.61290322580646 306.51612903225805 12.056451612903226 3.5802092149611613 3.4065493632113766 0.6962158007450535 0.5085 1.0180000000000002 0.224 0.181 0.1075 0.0635
85 83 90200 285.84615384615387 306.2692307692308 11.942307692307692 4.408839963356031 3.9764469287939446 0.6839776632222593 0.5 1.0170000000000001 0.2165 0.1815 0.104 0.0615
86 84 90199 284.8235294117647 304.7647058823529 12.0 3.7217215200313363 3.4390390546455216 0.7376433061167325 0.4975 1.0394999999999999 0.2045 0.1805 0.106 0.061
87 85 90198 287.0 306.67857142857144 11.928571428571429 4.242640687119285 3.780150898618537 0.6368769464331075 0.524 1.0375 0.2115 0.186 0.1065 0.05499999999999999
88 86 90197 286.25 306.17857142857144 12.303571428571429 5.11737237261468 5.078340360425494 0.5876600954251547 0.486 1.0110000000000001 0.2075 0.1765 0.102 0.067
89 87 90196 286.5 305.96875 12.171875 4.107919181288746 3.762349457121175 0.6915717492603353 0.4955 1.038 0.2055 0.177 0.105 0.061
90 88 90195 282.93333333333334 303.43333333333334 12.283333333333333 3.982740541665026 3.611863169550524 0.5580223014261069 0.516 1.0190000000000001 0.228 0.1875 0.1095 0.0625
91 89 90194 284.03125 304.84375 12.03125 4.4894624887061925 4.711086492254202 0.9348922063532245 0.5035000000000001 1.0270000000000001 0.213 0.185 0.104 0.061
92 90 90193 283.88235294117646 304.4117647058824 12.367647058823529 4.861400826210444 4.116806636922987 0.59789856912518 0.487 1.0100000000000002 0.208 0.1805 0.1035 0.0665
93 91 90192 287.1875 307.28125 12.40625 3.4043859578490805 3.402520894498666 0.5219779090153146 0.4975 1.021 0.2265 0.1865 0.113 0.064
94 92 90191 283.8666666666667 304.5 12.4 4.349201714746691 4.364630568559039 0.6244997998398398 0.5025 1.041 0.23199999999999998 0.18 0.108 0.0595
95 93 90190 285.32142857142856 305.10714285714283 12.178571428571429 5.217098067402794 5.1083914557623835 0.6841872878810006 0.5105 1.0314999999999999 0.214 0.1825 0.1065 0.062
96 94 90189 283.875 303.78125 12.078125 4.668712349245775 4.240683722880074 0.6263656954008576 0.4955 1.0180000000000002 0.214 0.183 0.102 0.0605
97 95 90188 286.8333333333333 306.75 11.875 3.4115815817431203 2.9190466480228325 0.5253966755382705 0.496 1.02 0.209 0.1775 0.104 0.0625
98 96 90187 289.9 308.875 11.725 5.219195340279955 4.664694523760372 0.6015604707757983 0.512 1.0315 0.2215 0.1875 0.11 0.0635
99 97 90186 288.8666666666667 308.5 11.7 3.922017621355394 3.253203549323856 0.7702813338860894 0.508 1.0030000000000001 0.207 0.183 0.105 0.0605
100 98 90131 285.06666666666666 305.7 11.716666666666667 2.9657301892713632 2.396525262402492 0.8532617157446801 0.4805 1.0070000000000001 0.2215 0.1835 0.1135 0.0675
101 99 90104 285.47058823529414 306.11764705882354 11.102941176470589 4.0164023564968385 4.0275865337938095 0.627546714510349 0.4965 1.0155 0.2145 0.1825 0.113 0.0635
102 100 90103 279.47058823529414 300.6470588235294 11.705882352941176 3.4405479566799433 2.827203491928921 0.5703152773430975 0.503 1.0185 0.225 0.185 0.106 0.063
103 101 90102 281.40625 302.65625 11.375 2.977618333080988 3.047636122882783 0.5994789404140899 0.518 1.0545 0.223 0.188 0.103 0.057999999999999996
104 102 90101 290.85 310.825 11.0625 5.443114917030504 4.821242059884568 0.5023382824352529 0.504 1.024 0.211 0.1865 0.10200000000000001 0.0615
105 103 90100 284.39285714285717 304.5 11.410714285714286 4.569614595457741 3.9776159406645295 0.5518406121558016 0.4895 1.0270000000000001 0.2095 0.178 0.1095 0.061
106 104 90099 285.5769230769231 305.84615384615387 11.73076923076923 3.9533148400869957 3.53762531925136 0.541201818441165 0.49 1.038 0.2365 0.1775 0.1055 0.0625
107 105 90066 280.84375 301.8125 12.0625 3.2797615671722236 2.591301555203485 0.6091746465505602 0.485 1.0205000000000002 0.216 0.181 0.107 0.063
108 106 90065 284.15625 304.375 11.4375 3.725833589614544 3.1991209730174317 0.6218671481916375 0.491 1.0015 0.2135 0.187 0.1015 0.0635
109 107 90064 278.39285714285717 300.39285714285717 11.857142857142858 5.016681356906645 4.143318939779401 0.6388765649999398 0.4885 1.0145 0.20350000000000001 0.182 0.1075 0.0635
110 108 90063 277.3666666666667 298.6 12.233333333333333 3.4106043778518527 3.4019602192461527 0.6420453428086074 0.482 1.0180000000000002 0.2135 0.177 0.105 0.064
111 109 90062 279.84375 301.21875 12.28125 3.6151536533735324 3.6634544404837355 0.5986638768958755 0.49 1.0235 0.2055 0.181 0.106 0.062
112 110 90061 272.7352941176471 295.1764705882353 12.294117647058824 3.2204203555492543 2.6620490585846497 0.6430356208551602 0.494 1.026 0.2175 0.185 0.105 0.0665
113 111 90060 285.4642857142857 306.10714285714283 11.767857142857142 5.254128600152338 4.600770787241491 0.6611967350562006 0.5015000000000001 1.017 0.215 0.1835 0.107 0.065
114 112 90059 282.21875 303.28125 11.703125 4.922742979020944 4.711915580472553 0.5709008095764097 0.497 1.0255 0.212 0.1815 0.1055 0.06
115 113 90058 282.4 303.4 11.933333333333334 4.103656905736638 3.7735924528226414 0.5878397362849467 0.499 1.018 0.2235 0.1815 0.108 0.061
116 114 90057 283.23333333333335 304.1666666666667 11.783333333333333 3.461053147365537 3.1207192903061447 0.6282692274990254 0.5085 1.028 0.228 0.187 0.1105 0.0595
117 115 90055 284.35714285714283 305.57142857142856 12.178571428571429 4.236021429480782 4.092053024972144 0.8260738218728843 0.494 1.033 0.2205 0.1825 0.1065 0.064
118 116 91269 279.55882352941177 300.7647058823529 12.102941176470589 4.333122610438507 4.0877062713156915 0.6727840725704631 0.503 1.0270000000000001 0.2175 0.1805 0.108 0.063
119 117 91268 281.7352941176471 303.11764705882354 11.926470588235293 5.537619065401196 4.121426836612555 0.6545356789490555 0.498 1.0225 0.2125 0.1775 0.1085 0.0605
120 118 91267 281.3529411764706 303.02941176470586 12.073529411764707 3.6532206012292323 3.2402368660480496 0.8056085838119023 0.5015000000000001 1.0195 0.2115 0.1845 0.1035 0.062
121 119 91266 287.5882352941176 308.44117647058823 12.220588235294118 3.3878471999957482 3.0018736940018784 0.7193867534491182 0.4945 1.0285000000000002 0.20850000000000002 0.18 0.111 0.0615
122 120 91265 283.56666666666666 304.43333333333334 12.55 3.0075830089218742 2.7650597743187317 0.6499999999999999 0.5015000000000001 1.016 0.212 0.1795 0.1105 0.065
123 121 91264 281.29411764705884 302.7352941176471 12.617647058823529 3.784872456975391 3.0225507686040487 0.7382294351771255 0.498 1.0215 0.213 0.1785 0.109 0.063
124 122 91263 286.35714285714283 307.57142857142856 12.285714285714286 4.4418005174405 4.118152944399879 0.6998542122237653 0.512 1.032 0.221 0.1855 0.108 0.0595
125 123 91262 288.60714285714283 308.9642857142857 12.017857142857142 3.6286487618305934 3.1222947474247076 0.8181222277825219 0.528 1.0295 0.2275 0.189 0.108 0.062
126 124 91261 283.8666666666667 305.2 12.0 3.9558676531058126 3.270066258248192 0.6055300708194983 0.4995 1.028 0.21 0.18 0.1075 0.062
127 125 91260 272.625 295.075 12.675 4.542507567412518 4.027328519006116 0.7545694136393286 0.492 1.0325000000000002 0.2105 0.1795 0.107 0.061
128 126 91259 282.875 303.90625 12.296875 5.993486047368426 5.713795668161402 0.44824963399315787 0.489 1.022 0.2145 0.182 0.107 0.0635
129 127 91258 290.28 310.88 12.17 4.308317537043898 4.0281012896897215 0.7785242449660769 0.4875 1.0105 0.2175 0.18 0.11 0.0645
130 128 91257 288.75 309.875 11.984375 4.630064794363034 3.9191038516477206 0.5075119302784911 0.5 1.0150000000000001 0.232 0.181 0.1085 0.0645
131 129 91182 287.6388888888889 308.55555555555554 12.416666666666666 3.207220826837274 3.1573938307517375 0.6718548123582125 0.5015000000000001 1.0355 0.2255 0.181 0.1115 0.0625
132 130 91181 285.88235294117646 306.79411764705884 12.044117647058824 3.2062870764497986 2.99783659018521 0.7211882256023074 0.4955 1.0115 0.214 0.182 0.106 0.061
133 131 91180 286.46875 306.84375 11.78125 3.372539612443418 3.083315737562405 0.5986638768958755 0.504 1.0295 0.2155 0.185 0.103 0.063
134 132 91179 280.13157894736844 302.0263157894737 11.907894736842104 3.819417512985999 3.54287158364112 0.616177340735163 0.4945 1.0230000000000001 0.20550000000000002 0.1785 0.1085 0.062
135 133 91178 282.88235294117646 304.11764705882354 11.941176470588236 3.931507014472223 3.603631386469789 0.6389870877176598 0.4985 1.0405000000000002 0.212 0.1805 0.1125 0.0635
136 134 91177 285.2647058823529 305.97058823529414 11.632352941176471 4.053385103323857 3.929416167662204 0.48973017074549147 0.506 1.0230000000000001 0.2235 0.1845 0.1015 0.0595
137 135 91176 285.2368421052632 306.0 11.631578947368421 3.936564161311471 3.35606285619576 0.6143482910488816 0.4985 1.0155 0.215 0.1765 0.1075 0.0655
138 136 91175 283.0 304.44117647058823 12.382352941176471 4.734106537234069 4.271596866792037 0.9079617082607724 0.504 1.0115 0.216 0.183 0.111 0.0645
139 137 91174 281.05882352941177 302.44117647058823 12.411764705882353 4.072440924863759 3.566108246770092 0.6355936113227738 0.503 1.0260000000000002 0.2055 0.181 0.102 0.0615
140 138 91104 272.52 294.14 12.25 4.699957446615874 4.17137866897744 0.5937171043518958 0.499 1.0205000000000002 0.213 0.1785 0.108 0.0635
141 139 91103 281.0 302.43333333333334 12.016666666666667 3.4737107920301407 3.169472441204617 0.507991688470939 0.4965 1.0425 0.21 0.181 0.105 0.0615
142 140 91102 279.46875 300.65625 11.828125 4.6903116567558705 4.16540345434869 0.5810735619308454 0.4985 1.0125000000000002 0.20350000000000001 0.18 0.104 0.063
143 141 91101 274.35185185185185 297.0 11.787037037037036 4.199459433499469 4.303314829119352 0.6426352851652086 0.501 1.008 0.2075 0.1815 0.1075 0.0605
144 142 91100 276.7586206896552 298.9655172413793 11.689655172413794 3.743087167803982 3.55724378601622 0.5859532919988424 0.51 1.0175 0.20750000000000002 0.182 0.105 0.062
145 143 91099 277.29411764705884 297.97058823529414 11.955882352941176 2.5382881188695783 2.4791518250454723 0.573529411764706 0.508 1.013 0.222 0.185 0.107 0.0615
146 144 91098 275.9375 296.90625 12.21875 3.3441880554179364 3.146023035119101 0.5294085733155443 0.5105 1.0140000000000002 0.2285 0.187 0.105 0.061
147 145 91097 281.0625 301.1875 11.734375 4.5065057139650895 3.972070461358912 0.5992752784614096 0.5105 1.055 0.2175 0.1845 0.102 0.062
148 146 91096 278.84375 299.4375 11.8125 3.945799784264275 3.823753881985607 0.6343057228182637 0.5035000000000001 1.0415 0.2105 0.178 0.1085 0.063
149 147 91095 278.03125 299.15625 11.703125 3.820048878941211 3.8087840497329326 0.5282544220117802 0.5165 1.025 0.225 0.1865 0.112 0.0645
150 148 91094 278.84375 299.65625 11.71875 3.042504878796417 2.8789035998970163 0.7281987623581903 0.506 1.0105 0.215 0.1795 0.1115 0.0605
151 149 91092 278.52941176470586 299.0 11.808823529411764 3.1081987796759782 2.733237683644457 0.5287986645989765 0.4985 1.0255 0.212 0.181 0.1055 0.0645
152 150 91091 281.39285714285717 302.9642857142857 12.071428571428571 3.4675978275857697 2.957824283116886 0.6906814144933471 0.507 1.0375 0.2275 0.1835 0.113 0.061
153 151 91090 280.4117647058824 301.02941176470586 12.176470588235293 3.606510836698666 2.994949612830073 0.6049107000353863 0.505 1.0270000000000001 0.214 0.1875 0.1165 0.062
154 152 91089 281.73333333333335 302.0 11.833333333333334 5.744175794276805 5.278888771954441 0.6368324391514265 0.5045 1.0195 0.20450000000000002 0.189 0.109 0.061
155 153 91088 282.21875 302.625 11.96875 3.5596205468420368 2.923503890881625 0.6487668591258342 0.5245 1.0265 0.228 0.1965 0.105 0.0605
156 154 90986 281.02777777777777 302.05555555555554 12.055555555555555 4.769615120223196 4.047938051543749 0.6538112386633235 0.49 1.0230000000000001 0.2015 0.1805 0.102 0.0625
157 155 90985 278.0882352941176 299.1470588235294 12.088235294117647 3.973201754244402 3.5157825080056666 0.669400392749473 0.4955 1.0215 0.21050000000000002 0.183 0.109 0.0605
158 156 90984 278.53333333333336 299.7 12.033333333333333 4.201058067783507 3.8397048497681876 0.5763872155263529 0.493 1.0235 0.2025 0.1785 0.1045 0.0635
159 157 90983 275.84375 297.875 12.28125 3.9537116659539047 3.6890886408434267 1.0601997158554608 0.4925 1.013 0.213 0.1785 0.101 0.0615
160 158 90982 286.73295454545456 307.96022727272725 10.801136363636363 11.30276737624774 9.209901289727753 1.9365500203725592 0.491 1.0260000000000002 0.216 0.1785 0.105 0.0655
161 159 90977 279.82142857142856 300.85714285714283 12.267857142857142 3.6258355827959696 3.2372197696070457 0.49066541657264584 0.5035000000000001 1.024 0.226 0.189 0.1115 0.067
162 160 90976 276.20588235294116 298.47058823529414 12.058823529411764 4.464101330843816 3.7748026369728107 0.6034789567259763 0.4945 1.0300000000000002 0.20450000000000002 0.1785 0.109 0.064
163 161 90975 278.0 299.1666666666667 12.0 4.835385442852759 4.439630329241103 0.5976143046671968 0.5055000000000001 1.044 0.2175 0.183 0.107 0.061
164 162 90974 279.75 300.64285714285717 11.892857142857142 5.025826158098644 4.0285967577724495 0.6860490254392339 0.4845 1.0285000000000002 0.2105 0.1725 0.1005 0.065
165 163 90973 281.46875 302.40625 11.703125 2.8721113205271136 2.3165083504058432 0.6943901888527804 0.498 1.0180000000000002 0.208 0.1855 0.1055 0.0605
166 164 90972 279.38235294117646 300.2647058823529 11.882352941176471 3.4129054887928745 3.2837283645755995 0.5294117647058824 0.4935 1.0235 0.20400000000000001 0.1765 0.105 0.0635
167 165 90971 282.11764705882354 302.3529411764706 11.676470588235293 4.470588235294118 4.645569381560535 0.5672735741760562 0.4985 1.0175 0.2065 0.178 0.1045 0.068
168 166 90970 281.8235294117647 301.55882352941177 11.955882352941176 3.8916999781230803 3.448709703050832 0.5862097478821985 0.501 1.001 0.212 0.1785 0.106 0.065
169 167 90969 279.9642857142857 300.75 12.017857142857142 3.2566650652068563 2.694239887506042 0.4721180023715102 0.4925 1.0335 0.2065 0.1785 0.102 0.0605
170 168 90968 279.5 299.73333333333335 11.9 5.264662065761359 4.138706185378335 0.4898979485566356 0.5125 1.0260000000000002 0.218 0.188 0.106 0.059
171 169 90967 277.43333333333334 297.73333333333335 11.9 4.038839217178895 3.6508750853581513 0.5385164807134504 0.493 1.0150000000000001 0.2025 0.1765 0.106 0.0655
172 170 90966 278.5625 299.4375 11.90625 4.534158549279017 4.038389994787527 0.5367363761661771 0.4915 1.02 0.205 0.1755 0.107 0.0635
173 171 90959 283.1 303.1333333333333 11.833333333333334 5.821511831131154 5.136362742468859 0.7110243002567179 0.498 1.0375 0.207 0.1805 0.112 0.062
174 172 90957 281.57142857142856 301.9642857142857 11.964285714285714 3.133101742780187 2.8218806147818576 0.5658206970626735 0.486 1.0215 0.199 0.178 0.1045 0.0605
175 173 90956 279.2352941176471 300.20588235294116 11.955882352941176 4.208246970004687 3.779039807743775 0.6682686922059862 0.494 1.0125000000000002 0.2155 0.181 0.1065 0.065
176 174 90955 279.5 299.56666666666666 11.916666666666666 3.9728243521874123 3.373260868786891 0.5489889697333534 0.508 1.0125000000000002 0.2215 0.1805 0.108 0.0655
177 175 90954 279.5 300.6 12.083333333333334 3.3541019662496847 3.2103997674225346 0.7312470322826767 0.5045 1.024 0.21 0.181 0.1035 0.0605
178 176 90914 282.2142857142857 302.10714285714283 12.321428571428571 4.0739340661712 3.5490369489913913 0.46702488680792925 0.4905 1.021 0.2095 0.1795 0.109 0.065
179 177 90913 281.14285714285717 301.7857142857143 12.071428571428571 3.562846832382836 2.9923371522362014 0.5297284633639759 0.501 1.021 0.2075 0.1795 0.109 0.0635
180 178 90912 281.0833333333333 301.8611111111111 12.0 3.5227435646413756 3.207220826837274 0.754615428178118 0.49 1.0185 0.216 0.1825 0.1065 0.0665
181 179 90911 280.10714285714283 300.57142857142856 12.285714285714286 2.5958660227683676 2.0429070922964416 0.6468132241526726 0.49 1.0220000000000002 0.226 0.1795 0.105 0.0635
182 180 90910 277.2692307692308 298.5 12.442307692307692 4.090868746439039 3.6611263504345426 0.5248978486136993 0.497 1.0135 0.22 0.1805 0.106 0.0635
183 181 90909 275.39285714285717 297.4642857142857 12.25 5.150168414127595 4.435909818556657 0.5428101483418094 0.5005 1.0095 0.2215 0.186 0.106 0.0645
184 182 90908 277.5 298.4375 12.40625 4.183300132670378 3.7578043788893534 0.9717694878416383 0.498 1.02 0.216 0.1795 0.1085 0.0635
185 183 90907 277.25 298.59375 11.90625 2.704163456597992 2.3698546237058506 0.8046495743489833 0.485 1.0055 0.208 0.176 0.1055 0.063
186 184 90906 278.6666666666667 299.46666666666664 11.516666666666667 3.2386554137309647 2.837056377460428 0.6767980168082317 0.4905 1.0225 0.2105 0.179 0.103 0.063
187 185 90905 275.1111111111111 296.77777777777777 11.875 3.6115384362544463 3.206859931035958 0.81967981553775 0.4975 1.0260000000000002 0.22 0.1785 0.104 0.0625
188 186 90904 271.2741935483871 293.741935483871 11.53225806451613 7.616131764833984 6.478090827553379 0.8513318206707513 0.4985 1.0165000000000002 0.2105 0.184 0.1055 0.0615
189 187 90903 277.4 298.1666666666667 11.683333333333334 2.244994432064365 2.252159457547849 0.7357913351548039 0.4995 1.018 0.2285 0.18 0.108 0.0635
190 188 90902 279.10714285714283 299.7142857142857 11.714285714285714 2.8452879055213587 2.8642768079662027 0.6328587552381911 0.492 1.0315 0.2105 0.1785 0.106 0.0665
191 189 90884 279.65625 300.5625 11.84375 6.420715375836247 5.459724695440238 0.5510997527671374 0.5125 1.0335 0.214 0.1825 0.1065 0.0645
192 190 90883 276.88235294117646 298.61764705882354 12.294117647058824 4.164024537154021 3.9779887460458987 0.7287948054919922 0.4915 1.0015 0.2095 0.181 0.103 0.067
193 191 90882 279.125 300.28125 11.421875 3.6721077053920954 3.144781143020926 0.9363273916611646 0.51 1.0265 0.2145 0.1845 0.105 0.06
194 192 90881 281.96875 302.78125 11.671875 5.156818150516847 4.890899552996361 0.7563210193925592 0.5055000000000001 1.0245000000000002 0.225 0.184 0.107 0.0615
195 193 90880 281.21875 301.5625 11.453125 4.735071112190397 4.344087217126286 0.9130937708554363 0.514 1.0295 0.226 0.1845 0.1035 0.062
196 194 90872 281.2 301.6 11.15 4.085747585611883 3.6660605559646715 0.6601767440112788 0.502 1.014 0.2175 0.178 0.103 0.063
197 195 90871 284.09375 304.21875 11.296875 3.987162015456608 3.407109983182228 0.9425644457409795 0.505 1.0165000000000002 0.212 0.1815 0.1035 0.0645
198 196 90870 282.7368421052632 303.1842105263158 11.5 4.209539358011539 3.267505592617086 0.7254762501100116 0.5015000000000001 1.0205000000000002 0.2155 0.1825 0.106 0.0635
199 197 90869 282.52941176470586 302.47058823529414 11.720588235294118 4.278780022098431 3.7825862154759475 0.7090919677200702 0.4965 1.0185 0.2305 0.187 0.1085 0.0645
200 198 90814 282.1470588235294 302.7647058823529 11.602941176470589 4.109761356612388 3.481538060460633 0.8726178646556939 0.504 1.0215 0.222 0.182 0.116 0.061
201 199 90813 280.55882352941177 301.88235294117646 11.5 4.052531354674858 3.3934600239661075 0.6966305460192359 0.5085 1.0434999999999999 0.208 0.1795 0.1095 0.0615
202 200 90812 277.5625 298.875 11.546875 3.715991624048687 3.2282928925362393 0.6417672743097765 0.5035000000000001 1.0260000000000002 0.2125 0.1785 0.1075 0.0615
203 201 90811 274.5 295.7692307692308 11.846153846153847 4.634735076654245 4.050714014055872 0.6617173282340482 0.5045 1.0594999999999999 0.227 0.18 0.1045 0.06
204 202 90779 280.6111111111111 301.5740740740741 11.648148148148149 4.244458987758679 3.572538530242688 0.7554102983100421 0.5025 1.014 0.21 0.1795 0.104 0.067
205 203 90778 282.609756097561 302.9512195121951 11.512195121951219 4.611110912020076 3.9844283460111725 0.6851010685457629 0.51 1.0325 0.218 0.185 0.107 0.0625
206 204 90777 279.53333333333336 300.8333333333333 11.583333333333334 3.1276544281973067 2.8294090470548006 0.7536946036396676 0.4845 1.0135 0.212 0.177 0.103 0.0635
207 205 90776 280.0625 301.15625 11.359375 3.1911743528049357 2.658822283925723 0.6153552708598505 0.4945 1.0305 0.215 0.177 0.103 0.061
208 206 90775 276.375 298.375 11.6875 4.036938815488786 3.524468044967921 0.7368641326594747 0.5065 1.0135 0.219 0.1795 0.105 0.0655
209 207 90773 270.29411764705884 294.4117647058824 11.426470588235293 3.0824876486056234 2.5909077112406167 0.7389614427294773 0.499 1.017 0.2045 0.178 0.1035 0.063
210 208 90772 267.85714285714283 291.98214285714283 11.732142857142858 3.9929785312496247 3.3567153983181424 0.7497873848291792 0.498 1.028 0.203 0.1805 0.1105 0.0625
211 209 90771 273.40625 295.90625 10.90625 3.6129919647710262 3.2148034057310566 0.5650981662507851 0.507 1.018 0.211 0.183 0.11 0.063
212 210 90770 269.97222222222223 293.90277777777777 11.916666666666666 4.291374495628224 3.5907277280913337 0.7949493345141213 0.498 1.029 0.2095 0.1785 0.111 0.0625
213 211 90769 281.7692307692308 303.34615384615387 11.576923076923077 7.8901481525901955 6.145306574891792 0.7164590773152753 0.51 1.03 0.2155 0.182 0.1105 0.0635
214 212 90768 273.13 295.71 12.055 12.730007855457119 10.102766947722788 0.6437973283573023 0.494 1.02 0.208 0.1795 0.107 0.063
215 213 90767 277.20567375886526 299.1276595744681 11.647163120567376 6.280124824273825 5.436090407597307 0.8611857455191054 0.5105 1.0155 0.222 0.179 0.105 0.061
216 214 90720 282.3076923076923 303.38461538461536 11.346153846153847 3.0098457763867463 2.646869312936193 0.5845647751373332 0.5145 1.001 0.2255 0.19 0.1065 0.063
217 215 90719 281.92857142857144 303.14285714285717 11.107142857142858 3.3373275389210475 2.8121456692899325 0.631850214748362 0.5135000000000001 1.0405000000000002 0.2145 0.1805 0.1115 0.063
218 216 90718 282.625 302.6875 11.125 3.9031237489989987 3.1764514398932655 0.57282196186948 0.5 1.008 0.20600000000000002 0.184 0.114 0.063
219 217 90717 283.53125 303.75 10.921875 4.756471742531432 4.205650960315181 0.45258588618625745 0.4965 1.004 0.2075 0.179 0.115 0.063
220 218 90716 284.3076923076923 305.0769230769231 10.384615384615385 3.6243750736583835 3.384615384615384 0.737820234355803 0.5265 1.0175 0.228 0.1935 0.1055 0.063
221 219 90715 285.46153846153845 305.8076923076923 10.634615384615385 2.911922035499646 2.717737050296848 0.8939722537822662 0.51 1.0295 0.2165 0.189 0.101 0.0625
222 220 90590 283.9 304.93333333333334 11.166666666666666 2.4812631191928567 2.682453271830761 0.6497862896539309 0.5115000000000001 1.013 0.2135 0.1875 0.1035 0.064
223 221 90589 286.7 307.46666666666664 11.4 3.1533051443419384 2.66749986983234 0.6633249580710799 0.504 1.0270000000000001 0.20500000000000002 0.186 0.105 0.0615
224 222 90588 286.23333333333335 306.3666666666667 11.066666666666666 4.047083998249714 3.371283962462307 0.9637888196533974 0.5045 1.02 0.2175 0.1885 0.1065 0.063
225 223 90587 285.90625 306.34375 11.359375 3.22450941035997 2.7111964033429965 0.7928821535228296 0.5125 1.0055 0.224 0.196 0.1075 0.0605
226 224 90575 281.8235294117647 302.8529411764706 11.220588235294118 2.7382968970135018 2.691297007908099 0.5449119798132032 0.51 1.021 0.2165 0.1835 0.107 0.0595
227 225 90574 281.20588235294116 301.8529411764706 11.632352941176471 3.611903618712029 3.2004811489485583 0.6220084112516646 0.5055000000000001 1.0325 0.208 0.183 0.1085 0.061
228 226 90573 282.9230769230769 304.3076923076923 11.192307692307692 3.0874818831368427 3.207793763383545 0.7081520245969989 0.4995 1.0434999999999999 0.214 0.1805 0.1095 0.0665
229 227 90572 282.06666666666666 303.6666666666667 11.233333333333333 3.2242139438249997 2.796823595120404 0.6018490028422596 0.514 1.0275 0.212 0.183 0.107 0.0645
230 228 90526 281.88235294117646 303.3529411764706 11.529411764705882 3.3410521932148067 2.8063201039709558 0.73705671094951 0.5025 1.0035 0.2135 0.181 0.109 0.0665
231 229 90524 279.1333333333333 300.73333333333335 11.766666666666667 4.185158964191869 3.9066894197289637 0.7498147919467996 0.4935 1.0085000000000002 0.208 0.1755 0.113 0.067
232 230 90523 280.8666666666667 302.3666666666667 11.666666666666666 2.741451359326945 2.8458546851321995 0.5374838498865698 0.498 1.0105 0.213 0.178 0.1105 0.067
233 231 90522 280.15625 300.375 11.796875 4.479881241450492 4.49131105580542 0.6715115295920093 0.498 1.004 0.222 0.184 0.112 0.065
234 232 90391 283.43333333333334 304.43333333333334 11.783333333333333 4.271481658108291 4.506908277547062 0.6413960468297951 0.5165 1.0115 0.2235 0.1815 0.11 0.0655
235 233 90390 257.6818181818182 281.59090909090907 12.522727272727273 4.948703812261106 5.078108908111821 0.4641040421968668 0.5035000000000001 1.0065 0.2265 0.184 0.1015 0.062
236 234 90389 278.625 300.5833333333333 11.854166666666666 4.7064893144111855 4.241822197541471 0.6689414315834301 0.502 1.0165000000000002 0.225 0.179 0.1005 0.0635
237 235 90388 280.52941176470586 301.5 11.529411764705882 4.545426234576824 3.5334535680615726 0.6294392517362557 0.491 1.013 0.20500000000000002 0.1755 0.107 0.067
238 236 90387 279.21875 300.15625 12.109375 5.242461105005931 4.816049827140496 0.5552923638724019 0.5035000000000001 1.0270000000000001 0.208 0.1815 0.105 0.0645
239 237 90386 278.625 299.4375 11.96875 3.370367190678191 3.44544536308443 0.7493486755176124 0.497 1.0150000000000001 0.20450000000000002 0.178 0.1065 0.0635
240 238 90385 283.32142857142856 304.5 11.767857142857142 3.546160614247586 2.8598201741668006 0.7131687695612806 0.505 1.0235 0.213 0.183 0.106 0.0655
241 239 90384 278.40625 299.40625 11.796875 3.9199758848110275 3.5519305930015017 0.7055513690547273 0.499 1.0075 0.206 0.1905 0.107 0.065
242 240 90383 281.61764705882354 302.2647058823529 11.794117647058824 3.325611008719282 3.3282111740959532 0.676470588235294 0.5035000000000001 1.0145 0.21 0.181 0.106 0.0645
243 241 90382 280.39285714285717 301.67857142857144 11.910714285714286 3.8204271050899696 3.5762467499218413 0.7077828993788005 0.504 1.0150000000000001 0.21 0.181 0.106 0.065
244 242 90381 281.59375 302.6875 11.5 3.2773786686161244 3.3951942138852678 0.8660254037844386 0.4845 1.0165000000000002 0.2015 0.18 0.1065 0.0645
245 243 90380 283.25 304.07142857142856 11.839285714285714 3.077858717633785 3.150153867314278 0.7202872867892394 0.49 1.012 0.2115 0.182 0.1085 0.067
246 244 90379 283.3125 303.78125 11.578125 4.034519023378127 3.926945178825393 0.5743117484215345 0.5 1.001 0.2135 0.178 0.1145 0.0645
247 245 90378 284.2083333333333 304.875 12.229166666666666 4.193041524027901 3.822221212855164 0.6766825737046548 0.52 1.012 0.2275 0.188 0.111 0.063
248 246 90377 283.53125 304.6875 11.578125 3.041220715025465 3.06632414300902 0.8848496959229856 0.5005 1.0140000000000002 0.207 0.18 0.109 0.065
249 247 90204 284.7826086956522 306.0217391304348 12.141304347826088 3.1271117628437413 2.892938407156165 0.6648229862336099 0.5075000000000001 1.0145 0.212 0.1865 0.107 0.0625
250 248 90203 281.07142857142856 302.35714285714283 12.25 3.7505101693785936 3.4039293021268153 0.57476703355111 0.508 1.0310000000000001 0.213 0.181 0.105 0.0645
251 249 90202 285.8125 306.84375 12.328125 2.4803918541230536 2.5993914552256263 0.7353716641093808 0.508 1.0345 0.2105 0.182 0.104 0.0645
252 250 90094 279.9 301.5 11.033333333333333 4.109744517606903 3.6765019606504588 0.835995746932297 0.508 1.0185 0.20400000000000001 0.179 0.1035 0.0615
253 251 90093 281.78125 303.65625 11.984375 3.048917584569973 3.0270589583785776 0.9394510947223383 0.521 1.016 0.2185 0.185 0.104 0.0665
254 252 90092 285.1666666666667 306.5 11.583333333333334 3.3968940061310255 2.8838631497813254 0.5335936864527374 0.5105 1.028 0.2065 0.1825 0.106 0.062
255 253 90091 283.3125 304.34375 11.8125 4.318835925339141 3.981279434742053 0.6584783595532961 0.503 1.0175 0.2105 0.1815 0.11 0.0645
256 254 90090 277.1 300.43333333333334 11.866666666666667 2.890789972769842 2.740843341422895 0.5906681715556449 0.5015000000000001 1.0185 0.209 0.1805 0.104 0.062
257 255 90089 276.8125 299.9375 11.859375 3.3113205447374012 3.020114857087392 0.6523320545358782 0.5015000000000001 1.0115 0.2125 0.1775 0.1035 0.062
258 256 90088 275.42857142857144 298.92857142857144 11.678571428571429 4.15269767249961 3.206339383923349 0.7222767291484531 0.5015000000000001 1.0110000000000001 0.213 0.1805 0.1055 0.061
259 257 90087 280.78125 303.09375 12.171875 3.620552228251928 2.6499926297067318 0.7138077362812763 0.5045 1.0290000000000001 0.2175 0.188 0.102 0.061
260 258 90086 280.6333333333333 302.8666666666667 12.366666666666667 3.68314479155457 2.985892756874492 0.6046119049072349 0.5075000000000001 1.0190000000000001 0.2115 0.1805 0.104 0.0625
261 259 90085 280.5357142857143 303.25 11.785714285714286 4.625103418590017 4.22260075579697 0.8283866789102287 0.51 1.0250000000000001 0.212 0.1895 0.105 0.062
262 260 90084 282.2631578947368 305.07894736842104 11.75 4.326687139908339 3.949560794685167 0.5932737009260788 0.5255000000000001 1.0185 0.218 0.1895 0.1035 0.062
263 261 90083 281.15384615384613 304.11538461538464 11.557692307692308 4.6549585447406985 4.022312032008486 0.6252218541157253 0.4905 1.0305 0.2145 0.1745 0.11 0.063
264 262 90050 282.7307692307692 304.88461538461536 11.653846153846153 2.903018221248259 2.8866659378401223 0.7039617391431972 0.4965 1.0215 0.208 0.182 0.107 0.0625
265 263 90048 282.2142857142857 305.32142857142856 11.553571428571429 3.5592650009431406 3.3386649537606177 0.6858165846311257 0.507 1.0285000000000002 0.22 0.187 0.1115 0.0615
266 264 90047 280.7352941176471 303.55882352941177 11.455882352941176 2.842004507276011 2.158310565759686 0.6458879781175808 0.4975 1.0090000000000001 0.23299999999999998 0.1885 0.1025 0.0625
267 265 90020 277.71875 300.53125 11.203125 4.570519493175803 3.6995301644262883 0.6478253888008713 0.5025 1.0255 0.2085 0.1905 0.107 0.063
268 266 90019 283.3666666666667 305.1666666666667 11.3 4.408199430858615 3.899430157799413 0.5567764362830022 0.492 1.014 0.2085 0.181 0.109 0.064
269 267 90018 276.60526315789474 299.7631578947368 11.710526315789474 3.039559123884585 2.90583995037141 0.5456958250875715 0.4955 1.0115 0.212 0.177 0.12 0.0645
270 268 90017 272.8333333333333 296.5 11.375 4.412734098291242 3.8297084310253524 0.8690272339422588 0.5085 1.0105 0.2125 0.183 0.11 0.061
271 269 90016 277.17857142857144 300.2142857142857 11.339285714285714 4.758853188896396 3.9853046384466633 0.5009557192537692 0.4965 1.0105 0.2055 0.1775 0.1055 0.0645

BIN
organized_data.xlsx Normal file

Binary file not shown.

8
requirements.txt Normal file
View file

@ -0,0 +1,8 @@
# generated by pip freeze
matplotlib==3.5.2
numpy==1.22.4
pandas==1.4.3
scikit-learn==1.1.1
scipy==1.8.1
seaborn==0.11.2
statsmodels==0.13.2

3069
数学建模.ipynb Normal file

File diff suppressed because one or more lines are too long

Binary file not shown.