Compare commits

..

No commits in common. "main" and "v1.0.0" have entirely different histories.
main ... v1.0.0

33 changed files with 1403 additions and 2526 deletions

View file

@ -18,6 +18,4 @@ __pycache__
.env.example
.github
settings.js
.vscode
Dockerfile_dev
LICENSE

View file

@ -1,6 +1,11 @@
HOMESERVER="https://matrix-client.matrix.org" # required
# Please remove the option that is blank
HOMESERVER="https://matrix.xxxxxx.xxxx" # required
USER_ID="@lullap:xxxxxxxxxxxxx.xxx" # required
PASSWORD="xxxxxxxxxxxxxxx" # required
DEVICE_ID="MatrixChatGPTBot" # required
ROOM_ID="!FYCmBSkCRUXXXXXXXXX:matrix.XXX.XXX" # Optional, if not set, bot will work on the room it is in
OPENAI_API_KEY="xxxxxxxxxxxxxxxxx" # Optional
DEVICE_ID="xxxxxxxxxxxxxx" # required
ROOM_ID="!FYCmBSkCRUXXXXXXXXX:matrix.XXX.XXX" # Optional, if the property is blank, bot will work on the room it is in (Unencrypted room only as for now)
OPENAI_API_KEY="xxxxxxxxxxxxxxxxx" # Optional, for !chat and !gpt command
BING_API_ENDPOINT="xxxxxxxxxxxxxxx" # Optional, for !bing command
ACCESS_TOKEN="xxxxxxxxxxxxxxxxxxxxx" # Optional, use user_id and password is recommended
JAILBREAKENABLED="true" # Optional
BING_AUTH_COOKIE="xxxxxxxxxxxxxxxxxxx" # _U cookie, Optional, for Bing Image Creator

View file

@ -1,27 +0,0 @@
HOMESERVER="https://matrix-client.matrix.org"
USER_ID="@lullap:xxxxxxxxxxxxx.xxx"
PASSWORD="xxxxxxxxxxxxxxx"
ACCESS_TOKEN="xxxxxxxxxxx"
DEVICE_ID="xxxxxxxxxxxxxx"
ROOM_ID="!FYCmBSkCRUXXXXXXXXX:matrix.XXX.XXX"
IMPORT_KEYS_PATH="element-keys.txt"
IMPORT_KEYS_PASSWORD="xxxxxxxxxxxx"
OPENAI_API_KEY="xxxxxxxxxxxxxxxxx"
GPT_API_ENDPOINT="https://api.openai.com/v1/chat/completions"
GPT_MODEL="gpt-3.5-turbo"
MAX_TOKENS=4000
TOP_P=1.0
PRESENCE_PENALTY=0.0
FREQUENCY_PENALTY=0.0
REPLY_COUNT=1
SYSTEM_PROMPT="You are ChatGPT, a large language model trained by OpenAI. Respond conversationally"
TEMPERATURE=0.8
LC_ADMIN="@admin:xxxxxx.xxx,@admin2:xxxxxx.xxx"
IMAGE_GENERATION_ENDPOINT="http://127.0.0.1:7860/sdapi/v1/txt2img"
IMAGE_GENERATION_BACKEND="sdwui" # openai or sdwui or localai
IMAGE_GENERATION_SIZE="512x512"
IMAGE_FORMAT="webp"
SDWUI_STEPS=20
SDWUI_SAMPLER_NAME="Euler a"
SDWUI_CFG_SCALE=7
TIMEOUT=120.0

View file

@ -7,26 +7,21 @@ on:
jobs:
push_to_registry:
name: Push Docker image to registry
name: Push Docker image to Docker Hub
runs-on: ubuntu-latest
steps:
- name: Check out the repo
-
name: Check out the repo
uses: actions/checkout@v3
- name: Log in to Docker Hub
-
name: Log in to Docker Hub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Login to GitHub Container Registry
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Docker metadata
-
name: Docker metadata
id: meta
uses: docker/metadata-action@v4
with:
@ -34,40 +29,23 @@ jobs:
tags: |
type=raw,value=latest
type=ref,event=tag
- name: Set up QEMU
-
name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Build and push Docker image(dockerhub)
-
name: Build and push Docker image
uses: docker/build-push-action@v4
with:
context: .
platforms: linux/amd64,linux/arm64
platforms: linux/386,linux/amd64,linux/arm/v6,linux/arm/v7,linux/arm64/v8,linux/ppc64le,linux/s390x
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
- name: Docker metadata(ghcr)
id: meta2
uses: docker/metadata-action@v4
with:
images: ghcr.io/hibobmaster/matrixchatgptbot
tags: |
type=raw,value=latest
type=sha,format=long
- name: Build and push Docker image(ghcr)
uses: docker/build-push-action@v4
with:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.meta2.outputs.tags }}
labels: ${{ steps.meta2.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
cache-to: type=gha,mode=max

6
.gitignore vendored
View file

@ -28,7 +28,6 @@ share/python-wheels/
MANIFEST
db
bot.log
Dockerfile_dev
# image generation folder
images/
@ -168,8 +167,3 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
# Custom
sync_db
manage_db
element-keys.txt

View file

@ -1,16 +0,0 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- repo: https://github.com/psf/black
rev: 23.12.0
hooks:
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.7
hooks:
- id: ruff
args: [--fix, --exit-non-zero-on-fix]

3
.vscode/settings.json vendored Normal file
View file

@ -0,0 +1,3 @@
{
"python.analysis.typeCheckingMode": "off"
}

315
BingImageGen.py Normal file
View file

@ -0,0 +1,315 @@
"""
Code derived from:
https://github.com/acheong08/EdgeGPT/blob/f940cecd24a4818015a8b42a2443dd97c3c2a8f4/src/ImageGen.py
"""
from log import getlogger
from typing import Union
from uuid import uuid4
import os
import contextlib
import aiohttp
import asyncio
import random
import time
import requests
import regex
logger = getlogger()
BING_URL = "https://www.bing.com"
# Generate random IP between range 13.104.0.0/14
FORWARDED_IP = (
f"13.{random.randint(104, 107)}.{random.randint(0, 255)}.{random.randint(0, 255)}"
)
HEADERS = {
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
"accept-language": "en-US,en;q=0.9",
"cache-control": "max-age=0",
"content-type": "application/x-www-form-urlencoded",
"referrer": "https://www.bing.com/images/create/",
"origin": "https://www.bing.com",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110.0.0.0 Safari/537.36 Edg/110.0.1587.63",
"x-forwarded-for": FORWARDED_IP,
}
# Error messages
error_timeout = "Your request has timed out."
error_redirect = "Redirect failed"
error_blocked_prompt = (
"Your prompt has been blocked by Bing. Try to change any bad words and try again."
)
error_noresults = "Could not get results"
error_unsupported_lang = "\nthis language is currently not supported by bing"
error_bad_images = "Bad images"
error_no_images = "No images"
#
sending_message = "Sending request..."
wait_message = "Waiting for results..."
download_message = "\nDownloading images..."
def debug(debug_file, text_var):
"""helper function for debug"""
with open(f"{debug_file}", "a") as f:
f.write(str(text_var))
class ImageGen:
"""
Image generation by Microsoft Bing
Parameters:3
auth_cookie: str
"""
def __init__(
self, auth_cookie: str, debug_file: Union[str, None] = None, quiet: bool = False
) -> None:
self.session: requests.Session = requests.Session()
self.session.headers = HEADERS
self.session.cookies.set("_U", auth_cookie)
self.quiet = quiet
self.debug_file = debug_file
if self.debug_file:
self.debug = partial(debug, self.debug_file)
def get_images(self, prompt: str) -> list:
"""
Fetches image links from Bing
Parameters:
prompt: str
"""
if not self.quiet:
print(sending_message)
if self.debug_file:
self.debug(sending_message)
url_encoded_prompt = requests.utils.quote(prompt)
# https://www.bing.com/images/create?q=<PROMPT>&rt=3&FORM=GENCRE
url = f"{BING_URL}/images/create?q={url_encoded_prompt}&rt=4&FORM=GENCRE"
response = self.session.post(url, allow_redirects=False)
# check for content waring message
if "this prompt has been blocked" in response.text.lower():
if self.debug_file:
self.debug(f"ERROR: {error_blocked_prompt}")
raise Exception(
error_blocked_prompt,
)
if (
"we're working hard to offer image creator in more languages"
in response.text.lower()
):
if self.debug_file:
self.debug(f"ERROR: {error_unsupported_lang}")
raise Exception(error_unsupported_lang)
if response.status_code != 302:
# if rt4 fails, try rt3
url = f"{BING_URL}/images/create?q={url_encoded_prompt}&rt=3&FORM=GENCRE"
response3 = self.session.post(url, allow_redirects=False, timeout=200)
if response3.status_code != 302:
if self.debug_file:
self.debug(f"ERROR: {error_redirect}")
print(f"ERROR: {response3.text}")
raise Exception(error_redirect)
response = response3
# Get redirect URL
redirect_url = response.headers["Location"].replace("&nfy=1", "")
request_id = redirect_url.split("id=")[-1]
self.session.get(f"{BING_URL}{redirect_url}")
# https://www.bing.com/images/create/async/results/{ID}?q={PROMPT}
polling_url = f"{BING_URL}/images/create/async/results/{request_id}?q={url_encoded_prompt}"
# Poll for results
if self.debug_file:
self.debug("Polling and waiting for result")
if not self.quiet:
print("Waiting for results...")
start_wait = time.time()
while True:
if int(time.time() - start_wait) > 200:
if self.debug_file:
self.debug(f"ERROR: {error_timeout}")
raise Exception(error_timeout)
if not self.quiet:
print(".", end="", flush=True)
response = self.session.get(polling_url)
if response.status_code != 200:
if self.debug_file:
self.debug(f"ERROR: {error_noresults}")
raise Exception(error_noresults)
if not response.text or response.text.find("errorMessage") != -1:
time.sleep(1)
continue
else:
break
# Use regex to search for src=""
image_links = regex.findall(r'src="([^"]+)"', response.text)
# Remove size limit
normal_image_links = [link.split("?w=")[0] for link in image_links]
# Remove duplicates
normal_image_links = list(set(normal_image_links))
# bad_images = [
# "https://r.bing.com/rp/in-2zU3AJUdkgFe7ZKv19yPBHVs.png",
# "https://r.bing.com/rp/TX9QuO3WzcCJz1uaaSwQAz39Kb0.jpg",
# ]
# for img in normal_image_links:
# if img in bad_images:
# raise Exception("Bad images")
# No images
if not normal_image_links:
raise Exception(error_no_images)
return normal_image_links
def save_images(self, links: list, output_dir: str) -> str:
"""
Saves images to output directory
"""
# image name
image_name = str(uuid4())
# since matrix only support one media attachment per message, we just need one link
if links:
link = links.pop()
image_path = os.path.join(output_dir, f"{image_name}.jpeg")
with contextlib.suppress(FileExistsError):
os.mkdir(output_dir)
try:
with self.session.get(link, stream=True) as response:
# save response to file
response.raise_for_status()
with open(
os.path.join(output_dir, image_path), "wb"
) as output_file:
for chunk in response.iter_content(chunk_size=8192):
output_file.write(chunk)
return image_path
except requests.exceptions.MissingSchema as url_exception:
raise Exception(
"Inappropriate contents found in the generated images. Please try again or try another prompt.",
) from url_exception
class ImageGenAsync:
"""
Image generation by Microsoft Bing
Parameters:
auth_cookie: str
"""
def __init__(self, auth_cookie: str, quiet: bool = True) -> None:
self.session = aiohttp.ClientSession(
headers=HEADERS,
cookies={"_U": auth_cookie},
)
self.quiet = quiet
async def __aenter__(self):
return self
async def __aexit__(self, *excinfo) -> None:
await self.session.close()
async def get_images(self, prompt: str) -> list:
"""
Fetches image links from Bing
Parameters:
prompt: str
"""
if not self.quiet:
print("Sending request...")
url_encoded_prompt = requests.utils.quote(prompt)
# https://www.bing.com/images/create?q=<PROMPT>&rt=3&FORM=GENCRE
url = f"{BING_URL}/images/create?q={url_encoded_prompt}&rt=4&FORM=GENCRE"
async with self.session.post(url, allow_redirects=False) as response:
content = await response.text()
if "this prompt has been blocked" in content.lower():
raise Exception(
"Your prompt has been blocked by Bing. Try to change any bad words and try again.",
)
if response.status != 302:
# if rt4 fails, try rt3
url = (
f"{BING_URL}/images/create?q={url_encoded_prompt}&rt=3&FORM=GENCRE"
)
async with self.session.post(
url,
allow_redirects=False,
timeout=200,
) as response3:
if response3.status != 302:
print(f"ERROR: {response3.text}")
raise Exception("Redirect failed")
response = response3
# Get redirect URL
redirect_url = response.headers["Location"].replace("&nfy=1", "")
request_id = redirect_url.split("id=")[-1]
await self.session.get(f"{BING_URL}{redirect_url}")
# https://www.bing.com/images/create/async/results/{ID}?q={PROMPT}
polling_url = f"{BING_URL}/images/create/async/results/{request_id}?q={url_encoded_prompt}"
# Poll for results
if not self.quiet:
print("Waiting for results...")
while True:
if not self.quiet:
print(".", end="", flush=True)
# By default, timeout is 300s, change as needed
response = await self.session.get(polling_url)
if response.status != 200:
raise Exception("Could not get results")
content = await response.text()
if content and content.find("errorMessage") == -1:
break
await asyncio.sleep(1)
continue
# Use regex to search for src=""
image_links = regex.findall(r'src="([^"]+)"', content)
# Remove size limit
normal_image_links = [link.split("?w=")[0] for link in image_links]
# Remove duplicates
normal_image_links = list(set(normal_image_links))
# Bad images
bad_images = [
"https://r.bing.com/rp/in-2zU3AJUdkgFe7ZKv19yPBHVs.png",
"https://r.bing.com/rp/TX9QuO3WzcCJz1uaaSwQAz39Kb0.jpg",
]
for im in normal_image_links:
if im in bad_images:
raise Exception("Bad images")
# No images
if not normal_image_links:
raise Exception("No images")
return normal_image_links
async def save_images(self, links: list, output_dir: str) -> str:
"""
Saves images to output directory
"""
if not self.quiet:
print("\nDownloading images...")
with contextlib.suppress(FileExistsError):
os.mkdir(output_dir)
# image name
image_name = str(uuid4())
# since matrix only support one media attachment per message, we just need one link
if links:
link = links.pop()
image_path = os.path.join(output_dir, f"{image_name}.jpeg")
try:
async with self.session.get(link, raise_for_status=True) as response:
# save response to file
with open(image_path, "wb") as output_file:
async for chunk in response.content.iter_chunked(8192):
output_file.write(chunk)
return f"{output_dir}/{image_name}.jpeg"
except aiohttp.client_exceptions.InvalidURL as url_exception:
raise Exception(
"Inappropriate contents found in the generated images. Please try again or try another prompt.",
) from url_exception

View file

@ -1,37 +0,0 @@
# Changelog
## 1.5.3
- Make gptbot more compatible by using non-streaming method
## 1.5.2
- Expose more stable diffusion webui api parameters
## 1.5.1
- fix: set timeout not work in image generation
## 1.5.0
- Fix localai v2.0+ image generation
- Fallback to gpt-3.5-turbo when caculate tokens using custom model
## 1.4.1
- Fix variable type imported from environment variable
- Bump pre-commit hook version
## 1.4.0
- Fix access_token login method not work in E2EE Room
## 1.3.0
- remove support for bing,bard,pandora
- refactor chat logic, add self host model support
- support new image generation endpoint
- admin system to manage langchain(flowise backend)
## 1.2.0
- rename `api_key` to `openai_api_key` in `config.json`
- rename `bing_api_endpoint` to `api_endpoint` in `config.json` and `env` file
- add `temperature` option to control ChatGPT model temperature
- remove `jailbreakEnabled` option
- session isolation for `!chat`, `!bing`, `!bard` command
- `!new + {chat,bing,bard,talk}` now can be used to create new conversation
- send some error message to user
- bug fix and code cleanup

View file

@ -1,16 +1,20 @@
FROM python:3.11-alpine as base
FROM base as pybuilder
# RUN sed -i 's|v3\.\d*|edge|' /etc/apk/repositories
RUN apk update && apk add --no-cache olm-dev gcc musl-dev libmagic libffi-dev cmake make g++ git python3-dev
RUN sed -i 's|v3\.\d*|edge|' /etc/apk/repositories
RUN apk update && apk add olm-dev gcc musl-dev libmagic
COPY requirements.txt /requirements.txt
RUN pip install -U pip setuptools wheel && pip install --user -r /requirements.txt && rm /requirements.txt
RUN pip3 install --user -r /requirements.txt && rm /requirements.txt
FROM base as runner
RUN apk update && apk add --no-cache olm-dev libmagic libffi-dev
LABEL "org.opencontainers.image.source"="https://github.com/hibobmaster/matrix_chatgpt_bot"
RUN apk update && apk add olm-dev libmagic
COPY --from=pybuilder /root/.local /usr/local
COPY . /app
FROM runner
WORKDIR /app
CMD ["python", "src/main.py"]
CMD ["python", "main.py"]

21
LICENSE
View file

@ -1,21 +0,0 @@
MIT License
Copyright (c) 2023 hibobmaster
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

112
README.md
View file

@ -1,117 +1,79 @@
## Introduction
This is a simple Matrix bot that support using OpenAI API, Langchain to generate responses from user inputs. The bot responds to these commands: `!gpt`, `!chat`, `!pic`, `!new`, `!lc` and `!help` depending on the first word of the prompt.
![ChatGPT](https://i.imgur.com/kK4rnPf.jpeg)
This is a simple Matrix bot that uses OpenAI's GPT API and Bing AI to generate responses to user inputs. The bot responds to four types of prompts: `!gpt`, `!chat` and `!bing` and `!pic` depending on the first word of the prompt.
![demo](https://i.imgur.com/kK4rnPf.jpeg "demo")
## Feature
1. Support official openai api and self host models([LocalAI](https://localai.io/model-compatibility/))
2. Support E2E Encrypted Room
3. Colorful code blocks
4. Langchain([Flowise](https://github.com/FlowiseAI/Flowise))
5. Image Generation with [DALL·E](https://platform.openai.com/docs/api-reference/images/create) or [LocalAI](https://localai.io/features/image-generation/) or [stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API)
1. Support openai and Bing AI
2. Support Bing Image Creator
3. Support E2E Encrypted Room
## Installation and Setup
Docker method(Recommended):<br>
Edit `config.json` or `.env` with proper values <br>
For explainations and complete parameter list see: https://github.com/hibobmaster/matrix_chatgpt_bot/wiki <br>
Create two empty file, for persist database only<br>
Create an empty file, for persist database only<br>
```bash
touch sync_db manage_db
touch db
sudo docker compose up -d
```
manage_db(can be ignored) is for langchain agent, sync_db is for matrix sync database<br>
<hr>
Normal Method:<br>
system dependece: <code>libolm-dev</code>
To run this application, follow the steps below:<br>
1. Clone the repository and create virtual environment:
```
git clone https://github.com/hibobmaster/matrix_chatgpt_bot.git
python -m venv venv
source venv/bin/activate
```
2. Install the required dependencies:<br>
```
pip install -U pip setuptools wheel
pip install -r requirements.txt
```
3. Create a new config.json file and complete it with the necessary information:<br>
If not set:<br>
`room_id`: bot will work in the room where it is in <br>
3. Create a new config.json file and fill it with the necessary information:<br>
Use password to login(recommended) or provide `access_token` <br>
If not set:<br>
`room_id`: bot will work in the room where it is in <br>
`api_key`: `!chat` command will not work <br>
`bing_api_endpoint`: `!bing` command will not work <br>
`bing_auth_cookie`: `!pic` command will not work
```json
{
"homeserver": "YOUR_HOMESERVER",
"user_id": "YOUR_USER_ID",
"password": "YOUR_PASSWORD",
"device_id": "YOUR_DEVICE_ID",
"room_id": "YOUR_ROOM_ID",
"openai_api_key": "YOUR_API_KEY",
"gpt_api_endpoint": "xxxxxxxxx"
"homeserver": "YOUR_HOMESERVER",
"user_id": "YOUR_USER_ID",
"password": "YOUR_PASSWORD",
"device_id": "YOUR_DEVICE_ID",
"room_id": "YOUR_ROOM_ID",
"api_key": "YOUR_API_KEY",
"access_token": "xxxxxxxxxxxxxx",
"bing_api_endpoint": "xxxxxxxxx",
"bing_auth_cookie": "xxxxxxxxxx"
}
```
4. Launch the bot:
4. Start the bot:
```
python src/main.py
python main.py
```
## Usage
To interact with the bot, simply send a message to the bot in the Matrix room with one of the following prompts:<br>
- `!help` help message
- `!gpt` To generate a one time response:
To interact with the bot, simply send a message to the bot in the Matrix room with one of the two prompts:<br>
- `!gpt` To generate a response using free_endpoint API:
```
!gpt What is the meaning of life?
```
- `!chat` To chat using official api with context conversation
```
!chat Can you tell me a joke?
```
- `!lc` To chat using langchain api endpoint
- `!bing` To chat with Bing AI with context conversation
```
!lc All the world is a stage
!bing Do you know Victor Marie Hugo?
```
- `!pic` To generate an image using openai DALL·E or LocalAI
- `!pic` To generate an image from Microsoft Bing
```
!pic A bridal bouquet made of succulents
```
- `!agent` display or set langchain agent
```
!agent list
!agent use {agent_name}
```
- `!new + {chat}` Start a new converstaion
LangChain(flowise) admin: https://github.com/hibobmaster/matrix_chatgpt_bot/wiki/Langchain-(flowise)
## Image Generation
![demo1](https://i.imgur.com/voeomsF.jpg)
![demo2](https://i.imgur.com/BKZktWd.jpg)
https://github.com/hibobmaster/matrix_chatgpt_bot/wiki/ <br>
## Thanks
1. [matrix-nio](https://github.com/poljar/matrix-nio)
2. [acheong08](https://github.com/acheong08)
3. [8go](https://github.com/8go/)
<a href="https://jb.gg/OpenSourceSupport" target="_blank">
<img src="https://resources.jetbrains.com/storage/products/company/brand/logos/jb_beam.png" alt="JetBrains Logo (Main) logo." width="200" height="200">
</a>
## Bing AI and Image Generation
https://github.com/waylaidwanderer/node-chatgpt-api <br>
https://github.com/hibobmaster/matrix_chatgpt_bot/wiki/Bing-AI <br>
https://github.com/acheong08/EdgeGPT/blob/master/src/ImageGen.py
![](https://i.imgur.com/KuYddd5.jpg)
![](https://i.imgur.com/3SRQdN0.jpg)

38
askgpt.py Normal file
View file

@ -0,0 +1,38 @@
import aiohttp
import asyncio
import json
from log import getlogger
logger = getlogger()
class askGPT:
def __init__(self):
self.session = aiohttp.ClientSession()
async def oneTimeAsk(self, prompt: str, api_endpoint: str, headers: dict) -> str:
jsons = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": prompt,
},
],
}
max_try = 3
while max_try > 0:
try:
async with self.session.post(url=api_endpoint,
json=jsons, headers=headers, timeout=60) as response:
status_code = response.status
if not status_code == 200:
# print failed reason
logger.warning(str(response.reason))
max_try = max_try - 1
# wait 2s
await asyncio.sleep(2)
continue
resp = await response.read()
return json.loads(resp)['choices'][0]['message']['content']
except Exception as e:
logger.error("Error Exception", exc_info=True)

52
bing.py Normal file
View file

@ -0,0 +1,52 @@
import aiohttp
import json
import asyncio
from log import getlogger
# api_endpoint = "http://localhost:3000/conversation"
logger = getlogger()
class BingBot:
def __init__(self, bing_api_endpoint: str, jailbreakEnabled: bool = False):
self.data = {
'clientOptions.clientToUse': 'bing',
}
self.bing_api_endpoint = bing_api_endpoint
self.session = aiohttp.ClientSession()
self.jailbreakEnabled = jailbreakEnabled
if self.jailbreakEnabled:
self.data['jailbreakConversationId'] = json.dumps(True)
async def ask_bing(self, prompt) -> str:
self.data['message'] = prompt
max_try = 3
while max_try > 0:
try:
resp = await self.session.post(url=self.bing_api_endpoint, json=self.data, timeout=60)
status_code = resp.status
body = await resp.read()
if not status_code == 200:
# print failed reason
logger.warning(str(resp.reason))
max_try = max_try - 1
# print(await resp.text())
await asyncio.sleep(2)
continue
json_body = json.loads(body)
if self.jailbreakEnabled:
self.data['jailbreakConversationId'] = json_body['jailbreakConversationId']
self.data['parentMessageId'] = json_body['messageId']
else:
self.data['conversationSignature'] = json_body['conversationSignature']
self.data['conversationId'] = json_body['conversationId']
self.data['clientId'] = json_body['clientId']
self.data['invocationId'] = json_body['invocationId']
return json_body['response']
except Exception as e:
logger.error("Error Exception", exc_info=True)
print(f"Error: {e}")
pass
return "Error, please retry"

600
bot.py Normal file
View file

@ -0,0 +1,600 @@
import sys
import asyncio
import re
import os
from functools import partial
import traceback
from typing import Optional, Union
from nio import (
AsyncClient,
MatrixRoom,
RoomMessageText,
InviteMemberEvent,
MegolmEvent,
LoginResponse,
JoinError,
ToDeviceError,
LocalProtocolError,
KeyVerificationEvent,
KeyVerificationStart,
KeyVerificationCancel,
KeyVerificationKey,
KeyVerificationMac,
AsyncClientConfig
)
from nio.store.database import SqliteStore
from askgpt import askGPT
from send_message import send_room_message
from v3 import Chatbot
from log import getlogger
from bing import BingBot
from BingImageGen import ImageGenAsync
from send_image import send_room_image
logger = getlogger()
class Bot:
def __init__(
self,
homeserver: str,
user_id: str,
device_id: str,
chatgpt_api_endpoint: str = os.environ.get(
"CHATGPT_API_ENDPOINT") or "https://api.openai.com/v1/chat/completions",
api_key: Optional[str] = os.environ.get("OPENAI_API_KEY") or "",
room_id: Union[str, None] = None,
bing_api_endpoint: Optional[str] = '',
password: Union[str, None] = None,
access_token: Union[str, None] = None,
jailbreakEnabled: Optional[bool] = True,
bing_auth_cookie: Optional[str] = '',
):
if (homeserver is None or user_id is None
or device_id is None):
logger.warning("homeserver && user_id && device_id is required")
sys.exit(1)
if (password is None and access_token is None):
logger.warning("password and access_toekn is required")
sys.exit(1)
self.homeserver = homeserver
self.user_id = user_id
self.password = password
self.access_token = access_token
self.device_id = device_id
self.room_id = room_id
self.api_key = api_key
self.chatgpt_api_endpoint = chatgpt_api_endpoint
self.bing_api_endpoint = bing_api_endpoint
self.jailbreakEnabled = jailbreakEnabled
self.bing_auth_cookie = bing_auth_cookie
# initialize AsyncClient object
self.store_path = os.getcwd()
self.config = AsyncClientConfig(store=SqliteStore,
store_name="db",
store_sync_tokens=True,
encryption_enabled=True,
)
self.client = AsyncClient(homeserver=self.homeserver, user=self.user_id, device_id=self.device_id,
config=self.config, store_path=self.store_path,)
if self.access_token is not None:
self.client.access_token = self.access_token
# setup event callbacks
self.client.add_event_callback(
self.message_callback, (RoomMessageText, ))
self.client.add_event_callback(
self.decryption_failure, (MegolmEvent, ))
self.client.add_event_callback(
self.invite_callback, (InviteMemberEvent, ))
self.client.add_to_device_callback(
self.to_device_callback, (KeyVerificationEvent, ))
# regular expression to match keyword [!gpt {prompt}] [!chat {prompt}]
self.gpt_prog = re.compile(r"^\s*!gpt\s*(.+)$")
self.chat_prog = re.compile(r"^\s*!chat\s*(.+)$")
self.bing_prog = re.compile(r"^\s*!bing\s*(.+)$")
self.pic_prog = re.compile(r"^\s*!pic\s*(.+)$")
self.help_prog = re.compile(r"^\s*!help\s*.*$")
# initialize chatbot and chatgpt_api_endpoint
if self.api_key != '':
self.chatbot = Chatbot(api_key=self.api_key, timeout=60)
self.chatgpt_api_endpoint = self.chatgpt_api_endpoint
# request header for !gpt command
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
else:
self.chatgpt_api_endpoint = self.chatgpt_api_endpoint
self.headers = {
"Content-Type": "application/json",
}
# initialize askGPT class
self.askgpt = askGPT()
# initialize bingbot
if self.bing_api_endpoint != '':
self.bingbot = BingBot(
bing_api_endpoint, jailbreakEnabled=self.jailbreakEnabled)
# initialize BingImageGenAsync
if self.bing_auth_cookie != '':
self.imageGen = ImageGenAsync(self.bing_auth_cookie, quiet=True)
# get current event loop
self.loop = asyncio.get_running_loop()
# message_callback RoomMessageText event
async def message_callback(self, room: MatrixRoom, event: RoomMessageText) -> None:
if self.room_id is None:
room_id = room.room_id
else:
# if event room id does not match the room id in config, return
if room.room_id != self.room_id:
return
room_id = self.room_id
# reply event_id
reply_to_event_id = event.event_id
# sender_id
sender_id = event.sender
# user_message
raw_user_message = event.body
# print info to console
print(
f"Message received in room {room.display_name}\n"
f"{room.user_name(event.sender)} | {raw_user_message}"
)
# prevent command trigger loop
if self.user_id != event.sender:
# remove newline character from event.body
content_body = re.sub("\r\n|\r|\n", " ", raw_user_message)
# chatgpt
n = self.chat_prog.match(content_body)
if n:
prompt = n.group(1)
if self.api_key != '':
try:
await self.chat(room_id,
reply_to_event_id,
prompt,
sender_id,
raw_user_message
)
except Exception as e:
logger.error(e)
await send_room_message(self.client, room_id, reply_message=str(e))
else:
logger.warning("No API_KEY provided")
await send_room_message(self.client, room_id, reply_message="API_KEY not provided")
m = self.gpt_prog.match(content_body)
if m:
prompt = m.group(1)
try:
await self.gpt(
room_id,
reply_to_event_id,
prompt, sender_id,
raw_user_message
)
except Exception as e:
logger.error(e)
await send_room_message(self.client, room_id, reply_message=str(e))
# bing ai
if self.bing_api_endpoint != '':
b = self.bing_prog.match(content_body)
if b:
prompt = b.group(1)
# raw_content_body used for construct formatted_body
try:
await self.bing(
room_id,
reply_to_event_id,
prompt,
sender_id,
raw_user_message
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
# Image Generation by Microsoft Bing
if self.bing_auth_cookie != '':
i = self.pic_prog.match(content_body)
if i:
prompt = i.group(1)
try:
await self.pic(room_id, prompt)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
# help command
h = self.help_prog.match(content_body)
if h:
await self.help(room_id)
# message_callback decryption_failure event
async def decryption_failure(self, room: MatrixRoom, event: MegolmEvent) -> None:
if not isinstance(event, MegolmEvent):
return
logger.error(
f"Failed to decrypt message: {event.event_id} from {event.sender} in {room.room_id}\n" +
"Please make sure the bot current session is verified"
)
# invite_callback event
async def invite_callback(self, room: MatrixRoom, event: InviteMemberEvent) -> None:
"""Handle an incoming invite event.
https://github.com/8go/matrix-eno-bot/blob/ad037e02bd2960941109e9526c1033dd157bb212/callbacks.py#L104
If an invite is received, then join the room specified in the invite.
code copied from:
"""
logger.debug(f"Got invite to {room.room_id} from {event.sender}.")
# Attempt to join 3 times before giving up
for attempt in range(3):
result = await self.client.join(room.room_id)
if type(result) == JoinError:
logger.error(
f"Error joining room {room.room_id} (attempt %d): %s",
attempt, result.message,
)
else:
break
else:
logger.error("Unable to join room: %s", room.room_id)
# Successfully joined room
logger.info(f"Joined {room.room_id}")
# to_device_callback event
async def to_device_callback(self, event: KeyVerificationEvent) -> None:
"""Handle events sent to device.
Specifically this will perform Emoji verification.
It will accept an incoming Emoji verification requests
and follow the verification protocol.
code copied from: https://github.com/8go/matrix-eno-bot/blob/ad037e02bd2960941109e9526c1033dd157bb212/callbacks.py#L127
"""
try:
client = self.client
logger.debug(
f"Device Event of type {type(event)} received in "
"to_device_cb().")
if isinstance(event, KeyVerificationStart): # first step
""" first step: receive KeyVerificationStart
KeyVerificationStart(
source={'content':
{'method': 'm.sas.v1',
'from_device': 'DEVICEIDXY',
'key_agreement_protocols':
['curve25519-hkdf-sha256', 'curve25519'],
'hashes': ['sha256'],
'message_authentication_codes':
['hkdf-hmac-sha256', 'hmac-sha256'],
'short_authentication_string':
['decimal', 'emoji'],
'transaction_id': 'SomeTxId'
},
'type': 'm.key.verification.start',
'sender': '@user2:example.org'
},
sender='@user2:example.org',
transaction_id='SomeTxId',
from_device='DEVICEIDXY',
method='m.sas.v1',
key_agreement_protocols=[
'curve25519-hkdf-sha256', 'curve25519'],
hashes=['sha256'],
message_authentication_codes=[
'hkdf-hmac-sha256', 'hmac-sha256'],
short_authentication_string=['decimal', 'emoji'])
"""
if "emoji" not in event.short_authentication_string:
estr = ("Other device does not support emoji verification "
f"{event.short_authentication_string}. Aborting.")
print(estr)
logger.info(estr)
return
resp = await client.accept_key_verification(
event.transaction_id)
if isinstance(resp, ToDeviceError):
estr = f"accept_key_verification() failed with {resp}"
print(estr)
logger.info(estr)
sas = client.key_verifications[event.transaction_id]
todevice_msg = sas.share_key()
resp = await client.to_device(todevice_msg)
if isinstance(resp, ToDeviceError):
estr = f"to_device() failed with {resp}"
print(estr)
logger.info(estr)
elif isinstance(event, KeyVerificationCancel): # anytime
""" at any time: receive KeyVerificationCancel
KeyVerificationCancel(source={
'content': {'code': 'm.mismatched_sas',
'reason': 'Mismatched authentication string',
'transaction_id': 'SomeTxId'},
'type': 'm.key.verification.cancel',
'sender': '@user2:example.org'},
sender='@user2:example.org',
transaction_id='SomeTxId',
code='m.mismatched_sas',
reason='Mismatched short authentication string')
"""
# There is no need to issue a
# client.cancel_key_verification(tx_id, reject=False)
# here. The SAS flow is already cancelled.
# We only need to inform the user.
estr = (f"Verification has been cancelled by {event.sender} "
f"for reason \"{event.reason}\".")
print(estr)
logger.info(estr)
elif isinstance(event, KeyVerificationKey): # second step
""" Second step is to receive KeyVerificationKey
KeyVerificationKey(
source={'content': {
'key': 'SomeCryptoKey',
'transaction_id': 'SomeTxId'},
'type': 'm.key.verification.key',
'sender': '@user2:example.org'
},
sender='@user2:example.org',
transaction_id='SomeTxId',
key='SomeCryptoKey')
"""
sas = client.key_verifications[event.transaction_id]
print(f"{sas.get_emoji()}")
# don't log the emojis
# The bot process must run in forground with a screen and
# keyboard so that user can accept/reject via keyboard.
# For emoji verification bot must not run as service or
# in background.
# yn = input("Do the emojis match? (Y/N) (C for Cancel) ")
# automatic match, so we use y
yn = "y"
if yn.lower() == "y":
estr = ("Match! The verification for this "
"device will be accepted.")
print(estr)
logger.info(estr)
resp = await client.confirm_short_auth_string(
event.transaction_id)
if isinstance(resp, ToDeviceError):
estr = ("confirm_short_auth_string() "
f"failed with {resp}")
print(estr)
logger.info(estr)
elif yn.lower() == "n": # no, don't match, reject
estr = ("No match! Device will NOT be verified "
"by rejecting verification.")
print(estr)
logger.info(estr)
resp = await client.cancel_key_verification(
event.transaction_id, reject=True)
if isinstance(resp, ToDeviceError):
estr = (f"cancel_key_verification failed with {resp}")
print(estr)
logger.info(estr)
else: # C or anything for cancel
estr = ("Cancelled by user! Verification will be "
"cancelled.")
print(estr)
logger.info(estr)
resp = await client.cancel_key_verification(
event.transaction_id, reject=False)
if isinstance(resp, ToDeviceError):
estr = (f"cancel_key_verification failed with {resp}")
print(estr)
logger.info(estr)
elif isinstance(event, KeyVerificationMac): # third step
""" Third step is to receive KeyVerificationMac
KeyVerificationMac(
source={'content': {
'mac': {'ed25519:DEVICEIDXY': 'SomeKey1',
'ed25519:SomeKey2': 'SomeKey3'},
'keys': 'SomeCryptoKey4',
'transaction_id': 'SomeTxId'},
'type': 'm.key.verification.mac',
'sender': '@user2:example.org'},
sender='@user2:example.org',
transaction_id='SomeTxId',
mac={'ed25519:DEVICEIDXY': 'SomeKey1',
'ed25519:SomeKey2': 'SomeKey3'},
keys='SomeCryptoKey4')
"""
sas = client.key_verifications[event.transaction_id]
try:
todevice_msg = sas.get_mac()
except LocalProtocolError as e:
# e.g. it might have been cancelled by ourselves
estr = (f"Cancelled or protocol error: Reason: {e}.\n"
f"Verification with {event.sender} not concluded. "
"Try again?")
print(estr)
logger.info(estr)
else:
resp = await client.to_device(todevice_msg)
if isinstance(resp, ToDeviceError):
estr = f"to_device failed with {resp}"
print(estr)
logger.info(estr)
estr = (f"sas.we_started_it = {sas.we_started_it}\n"
f"sas.sas_accepted = {sas.sas_accepted}\n"
f"sas.canceled = {sas.canceled}\n"
f"sas.timed_out = {sas.timed_out}\n"
f"sas.verified = {sas.verified}\n"
f"sas.verified_devices = {sas.verified_devices}\n")
print(estr)
logger.info(estr)
estr = ("Emoji verification was successful!\n"
"Initiate another Emoji verification from "
"another device or room if desired. "
"Or if done verifying, hit Control-C to stop the "
"bot in order to restart it as a service or to "
"run it in the background.")
print(estr)
logger.info(estr)
else:
estr = (f"Received unexpected event type {type(event)}. "
f"Event is {event}. Event will be ignored.")
print(estr)
logger.info(estr)
except BaseException:
estr = traceback.format_exc()
print(estr)
logger.info(estr)
# !chat command
async def chat(self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message):
await self.client.room_typing(room_id, timeout=180000)
try:
text = await asyncio.wait_for(self.chatbot.ask_async(prompt), timeout=180)
except TimeoutError as e:
logger.error("timeoutException", exc_info=True)
text = "Timeout error"
except Exception as e:
logger.error("Error", exc_info=True)
print(f"Error: {e}")
text = text.strip()
try:
await send_room_message(self.client, room_id, reply_message=text,
reply_to_event_id="", sender_id=sender_id, user_message=raw_user_message)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# !gpt command
async def gpt(self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message):
try:
# sending typing state
await self.client.room_typing(room_id, timeout=180000)
# timeout 120s
text = await asyncio.wait_for(self.askgpt.oneTimeAsk(prompt, self.chatgpt_api_endpoint, self.headers), timeout=180)
except TimeoutError:
logger.error("timeoutException", exc_info=True)
text = "Timeout error"
text = text.strip()
try:
await send_room_message(self.client, room_id, reply_message=text,
reply_to_event_id="", sender_id=sender_id, user_message=raw_user_message)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# !bing command
async def bing(self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message):
try:
# sending typing state
await self.client.room_typing(room_id, timeout=180000)
# timeout 120s
text = await asyncio.wait_for(self.bingbot.ask_bing(prompt), timeout=180)
except TimeoutError:
logger.error("timeoutException", exc_info=True)
text = "Timeout error"
text = text.strip()
try:
await send_room_message(self.client, room_id, reply_message=text,
reply_to_event_id="", sender_id=sender_id, user_message=raw_user_message)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# !pic command
async def pic(self, room_id, prompt):
try:
await self.client.room_typing(room_id, timeout=180000)
# generate image
try:
links = await self.imageGen.get_images(prompt)
image_path = await self.imageGen.save_images(links, "images")
except Exception as e:
logger.error(f"Image Generation error: {e}", exc_info=True)
# send image
try:
await send_room_image(self.client, room_id, image_path)
await self.client.room_typing(room_id, typing_state=False)
except Exception as e:
logger.error(e, exc_info=True)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# !help command
async def help(self, room_id):
try:
# sending typing state
await self.client.room_typing(room_id)
help_info = "!gpt [content], generate response without context conversation\n" + \
"!chat [content], chat with context conversation\n" + \
"!bing [content], chat with context conversation powered by Bing AI\n" + \
"!pic [prompt], Image generation by Microsoft Bing\n" + \
"!help, help message"
await send_room_message(self.client, room_id, reply_message=help_info)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# bot login
async def login(self) -> None:
if self.access_token is not None:
logger.info("Login via access_token")
else:
logger.info("Login via password")
try:
resp = await self.client.login(password=self.password)
if not isinstance(resp, LoginResponse):
logger.error("Login Failed")
print(f"Login Failed: {resp}")
sys.exit(1)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
# sync messages in the room
async def sync_forever(self, timeout=30000, full_state=True) -> None:
await self.client.sync_forever(timeout=timeout, full_state=full_state)
# Sync encryption keys with the server
async def sync_encryption_key(self) -> None:
if self.client.should_upload_keys:
await self.client.keys_upload()
# Trust own devices
async def trust_own_devices(self) -> None:
await self.client.sync(timeout=30000, full_state=True)
for device_id, olm_device in self.client.device_store[
self.user_id].items():
logger.debug("My other devices are: "
f"device_id={device_id}, "
f"olm_device={olm_device}.")
logger.info("Setting up trust for my own "
f"device {device_id} and session key "
f"{olm_device.keys['ed25519']}.")
self.client.verify_device(olm_device)

View file

@ -2,7 +2,7 @@ services:
app:
image: hibobmaster/matrixchatgptbot:latest
container_name: matrix_chatgpt_bot
restart: unless-stopped
restart: always
# build:
# context: .
# dockerfile: ./Dockerfile
@ -11,14 +11,19 @@ services:
volumes:
# use env file or config.json
# - ./config.json:/app/config.json
# use touch to create empty db file, for persist database only
# manage_db(can be ignored) is for langchain agent, sync_db is for matrix sync database
- ./sync_db:/app/sync_db
# - ./manage_db:/app/manage_db
# import_keys path
# - ./element-keys.txt:/app/element-keys.txt
# use touch to create an empty file db, for persist database only
- ./db:/app/db
networks:
- matrix_network
# api:
# # bing api
# image: hibobmaster/node-chatgpt-api:latest
# container_name: node-chatgpt-api
# restart: always
# volumes:
# - ./settings.js:/var/chatgpt-api/settings.js
# networks:
# - matrix_network
networks:
matrix_network:

View file

@ -1,7 +0,0 @@
{
"homeserver": "https://matrix-client.matrix.org",
"user_id": "@lullap:xxxxx.org",
"password": "xxxxxxxxxxxxxxxxxx",
"device_id": "MatrixChatGPTBot",
"openai_api_key": "xxxxxxxxxxxxxxxxxxxxxxxx"
}

9
config.json.sample Normal file
View file

@ -0,0 +1,9 @@
{
"homeserver": "https://matrix.qqs.tw",
"user_id": "@lullap:xxxxx.org",
"password": "xxxxxxxxxxxxxxxxxx",
"device_id": "ECYEOKVPLG",
"room_id": "!FYCmBSkCRUNvZDBaDQ:matrix.qqs.tw",
"api_key": "xxxxxxxxxxxxxxxxxxxxxxxx",
"access_token": "xxxxxxx"
}

View file

@ -1,29 +0,0 @@
{
"homeserver": "https://matrix-client.matrix.org",
"user_id": "@lullap:xxxxx.org",
"password": "xxxxxxxxxxxxxxxxxx",
"access_token": "xxxxxxxxxxxxxx",
"device_id": "MatrixChatGPTBot",
"room_id": "!xxxxxxxxxxxxxxxxxxxxxx:xxxxx.org",
"import_keys_path": "element-keys.txt",
"import_keys_password": "xxxxxxxxxxxxxxxxxxxx",
"openai_api_key": "xxxxxxxxxxxxxxxxxxxxxxxx",
"gpt_api_endpoint": "https://api.openai.com/v1/chat/completions",
"gpt_model": "gpt-3.5-turbo",
"max_tokens": 4000,
"top_p": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"reply_count": 1,
"temperature": 0.8,
"system_prompt": "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
"lc_admin": ["@admin:xxxxx.org"],
"image_generation_endpoint": "http://localai:8080/v1/images/generations",
"image_generation_backend": "localai",
"image_generation_size": "512x512",
"sdwui_steps": 20,
"sdwui_sampler_name": "Euler a",
"sdwui_cfg_scale": 7,
"image_format": "webp",
"timeout": 120.0
}

31
log.py Normal file
View file

@ -0,0 +1,31 @@
import logging
def getlogger():
# create a custom logger
logger = logging.getLogger(__name__)
# create handlers
warn_handler = logging.StreamHandler()
info_handler = logging.StreamHandler()
error_handler = logging.FileHandler('bot.log', mode='a')
warn_handler.setLevel(logging.WARNING)
error_handler.setLevel(logging.ERROR)
info_handler.setLevel(logging.INFO)
# create formatters
warn_format = logging.Formatter('%(name)s - %(funcName)s - %(levelname)s - %(message)s')
error_format = logging.Formatter('%(asctime)s - %(name)s - %(funcName)s - %(levelname)s - %(message)s')
info_format = logging.Formatter('%(message)s')
# set formatter
warn_handler.setFormatter(warn_format)
error_handler.setFormatter(error_format)
info_handler.setFormatter(info_format)
# add handlers to logger
logger.addHandler(warn_handler)
logger.addHandler(error_handler)
logger.addHandler(info_handler)
return logger

52
main.py Normal file
View file

@ -0,0 +1,52 @@
import json
import os
import asyncio
from bot import Bot
from log import getlogger
logger = getlogger()
async def main():
if os.path.exists('config.json'):
fp = open('config.json', 'r', encoding="utf8")
config = json.load(fp)
matrix_bot = Bot(homeserver=config.get('homeserver'),
user_id=config.get('user_id') ,
password=config.get('password'),
device_id=config.get('device_id'),
room_id=config.get('room_id'),
api_key=config.get('api_key'),
bing_api_endpoint=config.get('bing_api_endpoint'),
access_token=config.get('access_token'),
jailbreakEnabled=config.get('jailbreakEnabled'),
bing_auth_cookie=config.get('bing_auth_cookie'),
)
else:
matrix_bot = Bot(homeserver=os.environ.get('HOMESERVER'),
user_id=os.environ.get('USER_ID') ,
password=os.environ.get('PASSWORD'),
device_id=os.environ.get("DEVICE_ID"),
room_id=os.environ.get("ROOM_ID"),
api_key=os.environ.get("OPENAI_API_KEY"),
bing_api_endpoint=os.environ.get("BING_API_ENDPOINT"),
access_token=os.environ.get("ACCESS_TOKEN"),
jailbreakEnabled=os.environ.get("JAILBREAKENABLED"),
bing_auth_cookie=os.environ.get("BING_AUTH_COOKIE"),
)
await matrix_bot.login()
await matrix_bot.sync_encryption_key()
# await matrix_bot.trust_own_devices()
await matrix_bot.sync_forever(timeout=30000, full_state=True)
if __name__ == "__main__":
logger.info("matrix chatgpt bot start.....")
asyncio.run(main())

View file

@ -1,9 +0,0 @@
aiofiles
httpx
Markdown
matrix-nio[e2e]
Pillow
tiktoken
tenacity
python-magic
pytest

View file

@ -1,8 +1,51 @@
aiofiles
httpx
Markdown
matrix-nio[e2e]
Pillow
tiktoken
tenacity
python-magic
aiofiles==23.1.0
aiohttp==3.8.4
aiohttp-socks==0.7.1
aiosignal==1.3.1
anyio==3.6.2
async-timeout==4.0.2
atomicwrites==1.4.1
attrs==22.2.0
blobfile==2.0.1
cachetools==4.2.4
certifi==2022.12.7
cffi==1.15.1
charset-normalizer==3.1.0
cryptography==40.0.1
filelock==3.11.0
frozenlist==1.3.3
future==0.18.3
h11==0.14.0
h2==4.1.0
hpack==4.0.0
httpcore==0.16.3
httpx==0.23.3
hyperframe==6.0.1
idna==3.4
jsonschema==4.17.3
Logbook==1.5.3
lxml==4.9.2
Markdown==3.4.3
matrix-nio[e2e]==0.20.2
multidict==6.0.4
peewee==3.16.0
Pillow==9.5.0
pycparser==2.21
pycryptodome==3.17
pycryptodomex==3.17
pyrsistent==0.19.3
python-cryptography-fernet-wrapper==1.0.4
python-magic==0.4.27
python-olm==3.1.3
python-socks==2.2.0
regex==2023.3.23
requests==2.28.2
rfc3986==1.5.0
six==1.16.0
sniffio==1.3.0
tiktoken==0.3.3
toml==0.10.2
unpaddedbase64==2.1.0
urllib3==1.26.15
wcwidth==0.2.6
yarl==1.8.2

View file

@ -3,18 +3,17 @@ code derived from:
https://matrix-nio.readthedocs.io/en/latest/examples.html#sending-an-image
"""
import os
import aiofiles.os
import magic
from log import getlogger
from nio import AsyncClient
from nio import UploadResponse
from PIL import Image
from nio import AsyncClient, UploadResponse
from log import getlogger
logger = getlogger()
async def send_room_image(client: AsyncClient, room_id: str, image: str):
async def send_room_image(client: AsyncClient,
room_id: str, image: str):
"""
image: image path
"""
@ -33,14 +32,11 @@ async def send_room_image(client: AsyncClient, room_id: str, image: str):
filesize=file_stat.st_size,
)
if not isinstance(resp, UploadResponse):
logger.warning(f"Failed to upload image. Failure response: {resp}")
logger.warning(f"Failed to generate image. Failure response: {resp}")
await client.room_send(
room_id,
message_type="m.room.message",
content={
"msgtype": "m.text",
"body": f"Failed to upload image. Failure response: {resp}",
},
content={"msgtype": "m.text", "body": f"Failed to generate image. Failure response: {resp}", },
ignore_unverified_devices=True,
)
return
@ -61,4 +57,3 @@ async def send_room_image(client: AsyncClient, room_id: str, image: str):
await client.room_send(room_id, message_type="m.room.message", content=content)
except Exception as e:
logger.error(f"Image send of file {image} failed.\n Error: {e}", exc_info=True)
raise Exception(e)

26
send_message.py Normal file
View file

@ -0,0 +1,26 @@
from nio import AsyncClient
async def send_room_message(client: AsyncClient,
room_id: str,
reply_message: str,
sender_id: str = '',
user_message: str = '',
reply_to_event_id: str = '') -> None:
if reply_to_event_id == '':
content = {"msgtype": "m.text", "body": reply_message, }
else:
body = r'> <' + sender_id + r'> ' + user_message + r'\n\n' + reply_message
format = r'org.matrix.custom.html'
formatted_body = r'<mx-reply><blockquote><a href="https://matrix.to/#/' + room_id + r'/' + reply_to_event_id \
+ r'">In reply to</a> <a href="https://matrix.to/#/' + sender_id + r'">' + sender_id \
+ r'</a><br>' + user_message + r'</blockquote></mx-reply>' + reply_message
content={"msgtype": "m.text", "body": body, "format": format, "formatted_body": formatted_body,
"m.relates_to": {"m.in_reply_to": {"event_id": reply_to_event_id}}, }
await client.room_send(
room_id,
message_type="m.room.message",
content=content,
ignore_unverified_devices=True,
)
await client.room_typing(room_id, typing_state=False)

1496
src/bot.py

File diff suppressed because it is too large Load diff

View file

@ -1,41 +0,0 @@
import httpx
async def flowise_query(
api_url: str, prompt: str, session: httpx.AsyncClient, headers: dict = None
) -> str:
"""
Sends a query to the Flowise API and returns the response.
Args:
api_url (str): The URL of the Flowise API.
prompt (str): The question to ask the API.
session (httpx.AsyncClient): The httpx session to use.
headers (dict, optional): The headers to use. Defaults to None.
Returns:
str: The response from the API.
"""
if headers:
response = await session.post(
api_url,
json={"question": prompt},
headers=headers,
)
else:
response = await session.post(api_url, json={"question": prompt})
return response.text
async def test():
async with httpx.AsyncClient() as session:
api_url = "http://127.0.0.1:3000/api/v1/prediction/683f9ea8-e670-4d51-b657-0886eab9cea1"
prompt = "What is the capital of France?"
response = await flowise_query(api_url, prompt, session)
print(response)
if __name__ == "__main__":
import asyncio
asyncio.run(test())

View file

@ -1,106 +0,0 @@
import httpx
from pathlib import Path
import uuid
import base64
import io
from PIL import Image
async def get_images(
aclient: httpx.AsyncClient,
url: str,
prompt: str,
backend_type: str,
output_path: str,
**kwargs,
) -> list[str]:
timeout = kwargs.get("timeout", 180.0)
if backend_type == "openai":
resp = await aclient.post(
url,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {kwargs.get('api_key')}",
},
json={
"prompt": prompt,
"n": kwargs.get("n", 1),
"size": kwargs.get("size", "512x512"),
"response_format": "b64_json",
},
timeout=timeout,
)
if resp.status_code == 200:
b64_datas = []
for data in resp.json()["data"]:
b64_datas.append(data["b64_json"])
return save_images_b64(b64_datas, output_path, **kwargs)
else:
raise Exception(
f"{resp.status_code} {resp.reason_phrase} {resp.text}",
)
elif backend_type == "sdwui":
resp = await aclient.post(
url,
headers={
"Content-Type": "application/json",
},
json={
"prompt": prompt,
"sampler_name": kwargs.get("sampler_name", "Euler a"),
"cfg_scale": kwargs.get("cfg_scale", 7),
"batch_size": kwargs.get("n", 1),
"steps": kwargs.get("steps", 20),
"width": kwargs.get("width", 512),
"height": kwargs.get("height", 512),
},
timeout=timeout,
)
if resp.status_code == 200:
b64_datas = resp.json()["images"]
return save_images_b64(b64_datas, output_path, **kwargs)
else:
raise Exception(
f"{resp.status_code} {resp.reason_phrase} {resp.text}",
)
elif backend_type == "localai":
resp = await aclient.post(
url,
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {kwargs.get('api_key')}",
},
json={
"prompt": prompt,
"size": kwargs.get("size", "512x512"),
},
timeout=timeout,
)
if resp.status_code == 200:
image_url = resp.json()["data"][0]["url"]
return await save_image_url(image_url, aclient, output_path, **kwargs)
def save_images_b64(b64_datas: list[str], path: Path, **kwargs) -> list[str]:
images_path_list = []
for b64_data in b64_datas:
image_path = path / (
str(uuid.uuid4()) + "." + kwargs.get("image_format", "jpeg")
)
img = Image.open(io.BytesIO(base64.decodebytes(bytes(b64_data, "utf-8"))))
img.save(image_path)
images_path_list.append(image_path)
return images_path_list
async def save_image_url(
url: str, aclient: httpx.AsyncClient, path: Path, **kwargs
) -> list[str]:
images_path_list = []
r = await aclient.get(url)
image_path = path / (str(uuid.uuid4()) + "." + kwargs.get("image_format", "jpeg"))
if r.status_code == 200:
img = Image.open(io.BytesIO(r.content))
img.save(image_path)
images_path_list.append(image_path)
return images_path_list

View file

@ -1,200 +0,0 @@
import sqlite3
import sys
from log import getlogger
logger = getlogger()
class LCManager:
def __init__(self):
try:
self.conn = sqlite3.connect("manage_db")
self.c = self.conn.cursor()
self.c.execute(
"""
CREATE TABLE IF NOT EXISTS lc_commands (
command_id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT NOT NULL,
agent TEXT NOT NULL,
api_url TEXT NOT NULL,
api_key TEXT,
permission INTEGER NOT NULL
)
"""
)
self.conn.commit()
except Exception as e:
logger.error(e, exc_info=True)
sys.exit(1)
def add_command(
self,
username: str,
agent: str,
api_url: str,
api_key: str = None,
permission: int = 0,
) -> None:
# check if username and agent already exists
self.c.execute(
"""
SELECT username, agent FROM lc_commands
WHERE username = ? AND agent = ?
""",
(username, agent),
)
if self.c.fetchone() is not None:
raise Exception("agent already exists")
self.c.execute(
"""
INSERT INTO lc_commands (username, agent, api_url, api_key, permission)
VALUES (?, ?, ?, ?, ?)
""",
(username, agent, api_url, api_key, permission),
)
self.conn.commit()
def get_command_api_url(self, username: str, agent: str) -> list[any]:
self.c.execute(
"""
SELECT api_url FROM lc_commands
WHERE username = ? AND agent = ?
""",
(username, agent),
)
return self.c.fetchall()
def get_command_api_key(self, username: str, agent: str) -> list[any]:
self.c.execute(
"""
SELECT api_key FROM lc_commands
WHERE username = ? AND agent = ?
""",
(username, agent),
)
return self.c.fetchall()
def get_command_permission(self, username: str, agent: str) -> list[any]:
self.c.execute(
"""
SELECT permission FROM lc_commands
WHERE username = ? AND agent = ?
""",
(username, agent),
)
return self.c.fetchall()
def get_command_agent(self, username: str) -> list[any]:
self.c.execute(
"""
SELECT agent FROM lc_commands
WHERE username = ?
""",
(username,),
)
return self.c.fetchall()
def get_specific_by_username(self, username: str) -> list[any]:
self.c.execute(
"""
SELECT * FROM lc_commands
WHERE username = ?
""",
(username,),
)
return self.c.fetchall()
def get_specific_by_agent(self, agent: str) -> list[any]:
self.c.execute(
"""
SELECT * FROM lc_commands
WHERE agent = ?
""",
(agent,),
)
return self.c.fetchall()
def get_all(self) -> list[any]:
self.c.execute(
"""
SELECT * FROM lc_commands
"""
)
return self.c.fetchall()
def update_command_api_url(self, username: str, agent: str, api_url: str) -> None:
self.c.execute(
"""
UPDATE lc_commands
SET api_url = ?
WHERE username = ? AND agent = ?
""",
(api_url, username, agent),
)
self.conn.commit()
def update_command_api_key(self, username: str, agent: str, api_key: str) -> None:
self.c.execute(
"""
UPDATE lc_commands
SET api_key = ?
WHERE username = ? AND agent = ?
""",
(api_key, username, agent),
)
self.conn.commit()
def update_command_permission(
self, username: str, agent: str, permission: int
) -> None:
self.c.execute(
"""
UPDATE lc_commands
SET permission = ?
WHERE username = ? AND agent = ?
""",
(permission, username, agent),
)
self.conn.commit()
def update_command_agent(self, username: str, agent: str, api_url: str) -> None:
# check if agent already exists
self.c.execute(
"""
SELECT agent FROM lc_commands
WHERE agent = ?
""",
(agent,),
)
if self.c.fetchone() is not None:
raise Exception("agent already exists")
self.c.execute(
"""
UPDATE lc_commands
SET agent = ?
WHERE username = ? AND api_url = ?
""",
(agent, username, api_url),
)
self.conn.commit()
def delete_command(self, username: str, agent: str) -> None:
self.c.execute(
"""
DELETE FROM lc_commands
WHERE username = ? AND agent = ?
""",
(username, agent),
)
self.conn.commit()
def delete_commands(self, username: str) -> None:
self.c.execute(
"""
DELETE FROM lc_commands
WHERE username = ?
""",
(username,),
)
self.conn.commit()

View file

@ -1,40 +0,0 @@
import logging
import os
from pathlib import Path
log_path = Path(os.path.dirname(__file__)).parent / "bot.log"
def getlogger():
# create a custom logger if no log handler
logger = logging.getLogger(__name__)
if not logger.hasHandlers():
logger.setLevel(logging.INFO)
# create handlers
warn_handler = logging.StreamHandler()
info_handler = logging.StreamHandler()
error_handler = logging.FileHandler("bot.log", mode="a")
warn_handler.setLevel(logging.WARNING)
error_handler.setLevel(logging.ERROR)
info_handler.setLevel(logging.INFO)
# create formatters
warn_format = logging.Formatter(
"%(asctime)s - %(funcName)s - %(levelname)s - %(message)s",
)
error_format = logging.Formatter(
"%(asctime)s - %(name)s - %(funcName)s - %(levelname)s - %(message)s",
)
info_format = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
# set formatter
warn_handler.setFormatter(warn_format)
error_handler.setFormatter(error_format)
info_handler.setFormatter(info_format)
# add handlers to logger
logger.addHandler(warn_handler)
logger.addHandler(error_handler)
logger.addHandler(info_handler)
return logger

View file

@ -1,121 +0,0 @@
import asyncio
import json
import os
from pathlib import Path
import signal
import sys
from bot import Bot
from log import getlogger
logger = getlogger()
async def main():
need_import_keys = False
config_path = Path(os.path.dirname(__file__)).parent / "config.json"
if os.path.isfile(config_path):
try:
fp = open(config_path, encoding="utf8")
config = json.load(fp)
except Exception:
logger.error("config.json load error, please check the file")
sys.exit(1)
matrix_bot = Bot(
homeserver=config.get("homeserver"),
user_id=config.get("user_id"),
password=config.get("password"),
access_token=config.get("access_token"),
device_id=config.get("device_id"),
room_id=config.get("room_id"),
import_keys_path=config.get("import_keys_path"),
import_keys_password=config.get("import_keys_password"),
openai_api_key=config.get("openai_api_key"),
gpt_api_endpoint=config.get("gpt_api_endpoint"),
gpt_model=config.get("gpt_model"),
max_tokens=config.get("max_tokens"),
top_p=config.get("top_p"),
presence_penalty=config.get("presence_penalty"),
frequency_penalty=config.get("frequency_penalty"),
reply_count=config.get("reply_count"),
system_prompt=config.get("system_prompt"),
temperature=config.get("temperature"),
lc_admin=config.get("lc_admin"),
image_generation_endpoint=config.get("image_generation_endpoint"),
image_generation_backend=config.get("image_generation_backend"),
image_generation_size=config.get("image_generation_size"),
sdwui_steps=config.get("sdwui_steps"),
sdwui_sampler_name=config.get("sdwui_sampler_name"),
sdwui_cfg_scale=config.get("sdwui_cfg_scale"),
image_format=config.get("image_format"),
timeout=config.get("timeout"),
)
if (
config.get("import_keys_path")
and config.get("import_keys_password") is not None
):
need_import_keys = True
else:
matrix_bot = Bot(
homeserver=os.environ.get("HOMESERVER"),
user_id=os.environ.get("USER_ID"),
password=os.environ.get("PASSWORD"),
access_token=os.environ.get("ACCESS_TOKEN"),
device_id=os.environ.get("DEVICE_ID"),
room_id=os.environ.get("ROOM_ID"),
import_keys_path=os.environ.get("IMPORT_KEYS_PATH"),
import_keys_password=os.environ.get("IMPORT_KEYS_PASSWORD"),
openai_api_key=os.environ.get("OPENAI_API_KEY"),
gpt_api_endpoint=os.environ.get("GPT_API_ENDPOINT"),
gpt_model=os.environ.get("GPT_MODEL"),
max_tokens=int(os.environ.get("MAX_TOKENS", 4000)),
top_p=float(os.environ.get("TOP_P", 1.0)),
presence_penalty=float(os.environ.get("PRESENCE_PENALTY", 0.0)),
frequency_penalty=float(os.environ.get("FREQUENCY_PENALTY", 0.0)),
reply_count=int(os.environ.get("REPLY_COUNT", 1)),
system_prompt=os.environ.get("SYSTEM_PROMPT"),
temperature=float(os.environ.get("TEMPERATURE", 0.8)),
lc_admin=os.environ.get("LC_ADMIN"),
image_generation_endpoint=os.environ.get("IMAGE_GENERATION_ENDPOINT"),
image_generation_backend=os.environ.get("IMAGE_GENERATION_BACKEND"),
image_generation_size=os.environ.get("IMAGE_GENERATION_SIZE"),
sdwui_steps=int(os.environ.get("SDWUI_STEPS", 20)),
sdwui_sampler_name=os.environ.get("SDWUI_SAMPLER_NAME"),
sdwui_cfg_scale=float(os.environ.get("SDWUI_CFG_SCALE", 7)),
image_format=os.environ.get("IMAGE_FORMAT"),
timeout=float(os.environ.get("TIMEOUT", 120.0)),
)
if (
os.environ.get("IMPORT_KEYS_PATH")
and os.environ.get("IMPORT_KEYS_PASSWORD") is not None
):
need_import_keys = True
await matrix_bot.login()
if need_import_keys:
logger.info("start import_keys process, this may take a while...")
await matrix_bot.import_keys()
sync_task = asyncio.create_task(
matrix_bot.sync_forever(timeout=30000, full_state=True)
)
# handle signal interrupt
loop = asyncio.get_running_loop()
for signame in ("SIGINT", "SIGTERM"):
loop.add_signal_handler(
getattr(signal, signame),
lambda: asyncio.create_task(matrix_bot.close(sync_task)),
)
if matrix_bot.client.should_upload_keys:
await matrix_bot.client.keys_upload()
await sync_task
if __name__ == "__main__":
logger.info("matrix chatgpt bot start.....")
asyncio.run(main())

View file

@ -1,63 +0,0 @@
import markdown
from log import getlogger
from nio import AsyncClient
logger = getlogger()
async def send_room_message(
client: AsyncClient,
room_id: str,
reply_message: str,
sender_id: str = "",
user_message: str = "",
reply_to_event_id: str = "",
) -> None:
if reply_to_event_id == "":
content = {
"msgtype": "m.text",
"body": reply_message,
"format": "org.matrix.custom.html",
"formatted_body": markdown.markdown(
reply_message,
extensions=["nl2br", "tables", "fenced_code"],
),
}
else:
body = "> <" + sender_id + "> " + user_message + "\n\n" + reply_message
format = r"org.matrix.custom.html"
formatted_body = (
r'<mx-reply><blockquote><a href="https://matrix.to/#/'
+ room_id
+ r"/"
+ reply_to_event_id
+ r'">In reply to</a> <a href="https://matrix.to/#/'
+ sender_id
+ r'">'
+ sender_id
+ r"</a><br>"
+ user_message
+ r"</blockquote></mx-reply>"
+ markdown.markdown(
reply_message,
extensions=["nl2br", "tables", "fenced_code"],
)
)
content = {
"msgtype": "m.text",
"body": body,
"format": format,
"formatted_body": formatted_body,
"m.relates_to": {"m.in_reply_to": {"event_id": reply_to_event_id}},
}
try:
await client.room_send(
room_id,
message_type="m.room.message",
content=content,
ignore_unverified_devices=True,
)
await client.room_typing(room_id, typing_state=False)
except Exception as e:
logger.error(e)

View file

@ -1,26 +1,12 @@
"""
Code derived from https://github.com/acheong08/ChatGPT/blob/main/src/revChatGPT/V3.py
A simple wrapper for the official ChatGPT API
"""
import json
import os
from typing import AsyncGenerator
from tenacity import retry, wait_random_exponential, stop_after_attempt
import httpx
import requests
import tiktoken
ENGINES = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4",
"gpt-4-32k",
"gpt-4-0613",
"gpt-4-32k-0613",
]
class Chatbot:
"""
Official ChatGPT API
@ -28,48 +14,29 @@ class Chatbot:
def __init__(
self,
aclient: httpx.AsyncClient,
api_key: str,
api_url: str = None,
engine: str = None,
engine: str = os.environ.get("GPT_ENGINE") or "gpt-3.5-turbo",
proxy: str = None,
timeout: float = None,
max_tokens: int = None,
temperature: float = 0.8,
temperature: float = 0.5,
top_p: float = 1.0,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
reply_count: int = 1,
truncate_limit: int = None,
system_prompt: str = None,
system_prompt: str = "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
) -> None:
"""
Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
"""
self.engine: str = engine or "gpt-3.5-turbo"
self.engine: str = engine
self.api_key: str = api_key
self.api_url: str = api_url or "https://api.openai.com/v1/chat/completions"
self.system_prompt: str = (
system_prompt
or "You are ChatGPT, \
a large language model trained by OpenAI. Respond conversationally"
)
self.system_prompt: str = system_prompt
self.max_tokens: int = max_tokens or (
31000
if "gpt-4-32k" in engine
else 7000
if "gpt-4" in engine
else 15000
if "gpt-3.5-turbo-16k" in engine
else 4000
31000 if engine == "gpt-4-32k" else 7000 if engine == "gpt-4" else 4000
)
self.truncate_limit: int = truncate_limit or (
30500
if "gpt-4-32k" in engine
else 6500
if "gpt-4" in engine
else 14500
if "gpt-3.5-turbo-16k" in engine
else 3500
self.truncate_limit: int = (
30500 if engine == "gpt-4-32k" else 6500 if engine == "gpt-4" else 3500
)
self.temperature: float = temperature
self.top_p: float = top_p
@ -77,8 +44,31 @@ class Chatbot:
self.frequency_penalty: float = frequency_penalty
self.reply_count: int = reply_count
self.timeout: float = timeout
self.proxy = proxy
self.session = requests.Session()
self.session.proxies.update(
{
"http": proxy,
"https": proxy,
},
)
proxy = (
proxy or os.environ.get("all_proxy") or os.environ.get("ALL_PROXY") or None
)
self.aclient = aclient
if proxy:
if "socks5h" not in proxy:
self.aclient = httpx.AsyncClient(
follow_redirects=True,
proxies=proxy,
timeout=timeout,
)
else:
self.aclient = httpx.AsyncClient(
follow_redirects=True,
proxies=proxy,
timeout=timeout,
)
self.conversation: dict[str, list[dict]] = {
"default": [
@ -89,8 +79,6 @@ class Chatbot:
],
}
if self.get_token_count("default") > self.max_tokens:
raise Exception("System prompt is too long")
def add_to_conversation(
self,
@ -117,26 +105,31 @@ class Chatbot:
else:
break
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def get_token_count(self, convo_id: str = "default") -> int:
"""
Get token count
"""
_engine = self.engine
if self.engine not in ENGINES:
# use gpt-3.5-turbo to caculate token
_engine = "gpt-3.5-turbo"
if self.engine not in [
"gpt-3.5-turbo",
"gpt-3.5-turbo-0301",
"gpt-4",
"gpt-4-0314",
"gpt-4-32k",
"gpt-4-32k-0314",
]:
raise NotImplementedError("Unsupported engine {self.engine}")
tiktoken.model.MODEL_TO_ENCODING["gpt-4"] = "cl100k_base"
encoding = tiktoken.encoding_for_model(_engine)
encoding = tiktoken.encoding_for_model(self.engine)
num_tokens = 0
for message in self.conversation[convo_id]:
# every message follows <im_start>{role/name}\n{content}<im_end>\n
num_tokens += 5
for key, value in message.items():
if value:
num_tokens += len(encoding.encode(value))
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += 5 # role is always required and always 1 token
num_tokens += 5 # every reply is primed with <im_start>assistant
@ -148,15 +141,13 @@ class Chatbot:
"""
return self.max_tokens - self.get_token_count(convo_id)
async def ask_stream_async(
def ask_stream(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
model: str = None,
pass_history: bool = True,
**kwargs,
) -> AsyncGenerator[str, None]:
):
"""
Ask a question
"""
@ -166,13 +157,12 @@ class Chatbot:
self.add_to_conversation(prompt, "user", convo_id=convo_id)
self.__truncate_conversation(convo_id=convo_id)
# Get response
async with self.aclient.stream(
"post",
self.api_url,
response = self.session.post(
os.environ.get("API_URL") or "https://api.openai.com/v1/chat/completions",
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
json={
"model": model or self.engine,
"messages": self.conversation[convo_id] if pass_history else [prompt],
"model": self.engine,
"messages": self.conversation[convo_id],
"stream": True,
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
@ -187,18 +177,79 @@ class Chatbot:
),
"n": kwargs.get("n", self.reply_count),
"user": role,
"max_tokens": min(
self.get_max_tokens(convo_id=convo_id),
kwargs.get("max_tokens", self.max_tokens),
"max_tokens": self.get_max_tokens(convo_id=convo_id),
},
timeout=kwargs.get("timeout", self.timeout),
stream=True,
)
response_role: str = None
full_response: str = ""
for line in response.iter_lines():
if not line:
continue
# Remove "data: "
line = line.decode("utf-8")[6:]
if line == "[DONE]":
break
resp: dict = json.loads(line)
choices = resp.get("choices")
if not choices:
continue
delta = choices[0].get("delta")
if not delta:
continue
if "role" in delta:
response_role = delta["role"]
if "content" in delta:
content = delta["content"]
full_response += content
yield content
self.add_to_conversation(full_response, response_role, convo_id=convo_id)
async def ask_stream_async(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
**kwargs,
) -> AsyncGenerator[str, None]:
"""
Ask a question
"""
# Make conversation if it doesn't exist
if convo_id not in self.conversation:
self.reset(convo_id=convo_id, system_prompt=self.system_prompt)
self.add_to_conversation(prompt, "user", convo_id=convo_id)
self.__truncate_conversation(convo_id=convo_id)
# Get response
async with self.aclient.stream(
"post",
os.environ.get("API_URL") or "https://api.openai.com/v1/chat/completions",
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
json={
"model": self.engine,
"messages": self.conversation[convo_id],
"stream": True,
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"n": kwargs.get("n", self.reply_count),
"user": role,
"max_tokens": self.get_max_tokens(convo_id=convo_id),
},
timeout=kwargs.get("timeout", self.timeout),
) as response:
if response.status_code != 200:
await response.aread()
raise Exception(
f"{response.status_code} {response.reason_phrase} {response.text}",
)
response_role: str = ""
full_response: str = ""
@ -211,8 +262,6 @@ class Chatbot:
if line == "[DONE]":
break
resp: dict = json.loads(line)
if "error" in resp:
raise Exception(f"{resp['error']}")
choices = resp.get("choices")
if not choices:
continue
@ -232,8 +281,6 @@ class Chatbot:
prompt: str,
role: str = "user",
convo_id: str = "default",
model: str = None,
pass_history: bool = True,
**kwargs,
) -> str:
"""
@ -243,102 +290,35 @@ class Chatbot:
prompt=prompt,
role=role,
convo_id=convo_id,
model=model,
pass_history=pass_history,
**kwargs,
)
full_response: str = "".join([r async for r in response])
return full_response
async def ask_async_v2(
def ask(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
model: str = None,
pass_history: bool = True,
**kwargs,
) -> str:
# Make conversation if it doesn't exist
if convo_id not in self.conversation:
self.reset(convo_id=convo_id, system_prompt=self.system_prompt)
self.add_to_conversation(prompt, "user", convo_id=convo_id)
self.__truncate_conversation(convo_id=convo_id)
# Get response
response = await self.aclient.post(
url=self.api_url,
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
json={
"model": model or self.engine,
"messages": self.conversation[convo_id] if pass_history else [prompt],
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"n": kwargs.get("n", self.reply_count),
"user": role,
"max_tokens": min(
self.get_max_tokens(convo_id=convo_id),
kwargs.get("max_tokens", self.max_tokens),
),
},
timeout=kwargs.get("timeout", self.timeout),
)
resp = response.json()
full_response = resp["choices"][0]["message"]["content"]
self.add_to_conversation(
full_response, resp["choices"][0]["message"]["role"], convo_id=convo_id
"""
Non-streaming ask
"""
response = self.ask_stream(
prompt=prompt,
role=role,
convo_id=convo_id,
**kwargs,
)
full_response: str = "".join(response)
return full_response
def reset(self, convo_id: str = "default", system_prompt: str = None) -> None:
"""
Reset the conversation
"""
self.conversation[convo_id] = [
{"role": "system", "content": system_prompt or self.system_prompt},
]
@retry(wait=wait_random_exponential(min=2, max=5), stop=stop_after_attempt(3))
async def oneTimeAsk(
self,
prompt: str,
role: str = "user",
model: str = None,
**kwargs,
) -> str:
response = await self.aclient.post(
url=self.api_url,
json={
"model": model or self.engine,
"messages": [
{
"role": role,
"content": prompt,
}
],
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"user": role,
},
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
timeout=kwargs.get("timeout", self.timeout),
)
resp = response.json()
return resp["choices"][0]["message"]["content"]
]