This commit is contained in:
hibobmaster 2023-09-13 15:27:34 +08:00
parent 5f5a5863ca
commit 8512e3ea22
Signed by: bobmaster
SSH key fingerprint: SHA256:5ZYgd8fg+PcNZNy4SzcSKu5JtqZyBF8kUhY7/k2viDk
17 changed files with 562 additions and 837 deletions

View file

@ -1,20 +1,6 @@
# Please remove the option that is blank
HOMESERVER="https://matrix.xxxxxx.xxxx" # required
HOMESERVER="https://matrix-client.matrix.org" # required
USER_ID="@lullap:xxxxxxxxxxxxx.xxx" # required
PASSWORD="xxxxxxxxxxxxxxx" # Optional
DEVICE_ID="xxxxxxxxxxxxxx" # required
PASSWORD="xxxxxxxxxxxxxxx" # Optional if you use access token
DEVICE_ID="MatrixChatGPTBot" # required
ROOM_ID="!FYCmBSkCRUXXXXXXXXX:matrix.XXX.XXX" # Optional, if not set, bot will work on the room it is in
OPENAI_API_KEY="xxxxxxxxxxxxxxxxx" # Optional, for !chat and !gpt command
API_ENDPOINT="xxxxxxxxxxxxxxx" # Optional, for !chat and !bing command
ACCESS_TOKEN="xxxxxxxxxxxxxxxxxxxxx" # Optional, use user_id and password is recommended
BARD_TOKEN="xxxxxxxxxxxxxxxxxxxx", # Optional, for !bard command
BING_AUTH_COOKIE="xxxxxxxxxxxxxxxxxxx" # _U cookie, Optional, for Bing Image Creator
MARKDOWN_FORMATTED="true" # Optional
OUTPUT_FOUR_IMAGES="true" # Optional
IMPORT_KEYS_PATH="element-keys.txt" # Optional, used for E2EE Room
IMPORT_KEYS_PASSWORD="xxxxxxx" # Optional
FLOWISE_API_URL="http://localhost:3000/api/v1/prediction/xxxx" # Optional
FLOWISE_API_KEY="xxxxxxxxxxxxxxxxxxxxxxx" # Optional
PANDORA_API_ENDPOINT="http://pandora:8008" # Optional, for !talk, !goon command
PANDORA_API_MODEL="text-davinci-002-render-sha-mobile" # Optional
TEMPERATURE="0.8" # Optional

20
.full-env.example Normal file
View file

@ -0,0 +1,20 @@
HOMESERVER="https://matrix-client.matrix.org"
USER_ID="@lullap:xxxxxxxxxxxxx.xxx"
PASSWORD="xxxxxxxxxxxxxxx"
DEVICE_ID="xxxxxxxxxxxxxx"
ROOM_ID="!FYCmBSkCRUXXXXXXXXX:matrix.XXX.XXX"
IMPORT_KEYS_PATH="element-keys.txt"
IMPORT_KEYS_PASSWORD="xxxxxxxxxxxx"
OPENAI_API_KEY="xxxxxxxxxxxxxxxxx"
GPT_API_ENDPOINT="https://api.openai.com/v1/chat/completions"
GPT_MODEL="gpt-3.5-turbo"
MAX_TOKENS=4000
TOP_P=1.0
PRESENCE_PENALTY=0.0
FREQUENCY_PENALTY=0.0
REPLY_COUNT=1
SYSTEM_PROMPT="You are ChatGPT, a large language model trained by OpenAI. Respond conversationally"
TEMPERATURE=0.8
FLOWISE_API_URL="http://flowise:3000/api/v1/prediction/6deb3c89-45bf-4ac4-a0b0-b2d5ef249d21"
FLOWISE_API_KEY="U3pe0bbVDWOyoJtsDzFJjRvHKTP3FRjODwuM78exC3A="
TIMEOUT=120.0

View file

@ -44,12 +44,8 @@ pip install -r requirements.txt
```
3. Create a new config.json file and complete it with the necessary information:<br>
Use password to login(recommended) or provide `access_token` <br>
If not set:<br>
`room_id`: bot will work in the room where it is in <br>
`openai_api_key`: `!gpt` `!chat` command will not work <br>
`api_endpoint`: `!bing` `!chat` command will not work <br>
`bing_auth_cookie`: `!pic` command will not work
```json
{
@ -59,7 +55,7 @@ pip install -r requirements.txt
"device_id": "YOUR_DEVICE_ID",
"room_id": "YOUR_ROOM_ID",
"openai_api_key": "YOUR_API_KEY",
"api_endpoint": "xxxxxxxxx"
"gpt_api_endpoint": "xxxxxxxxx"
}
```

View file

@ -11,32 +11,13 @@ services:
volumes:
# use env file or config.json
# - ./config.json:/app/config.json
# use touch to create an empty file db, for persist database only
- ./db:/app/db
# use touch to create empty db file, for persist database only
- ./sync_db:/app/sync_db
- ./manage_db:/app/manage_db
# import_keys path
# - ./element-keys.txt:/app/element-keys.txt
networks:
- matrix_network
api:
# ChatGPT and Bing API
image: hibobmaster/node-chatgpt-api:latest
container_name: node-chatgpt-api
restart: unless-stopped
volumes:
- ./settings.js:/app/settings.js
networks:
- matrix_network
# pandora:
# # ChatGPT Web
# image: pengzhile/pandora
# container_name: pandora
# restart: unless-stopped
# environment:
# - PANDORA_ACCESS_TOKEN=xxxxxxxxxxxxxx
# - PANDORA_SERVER=0.0.0.0:8008
# networks:
# - matrix_network
networks:
matrix_network:

View file

@ -1,21 +1,7 @@
{
"homeserver": "https://matrix.qqs.tw",
"homeserver": "https://matrix-client.matrix.org",
"user_id": "@lullap:xxxxx.org",
"password": "xxxxxxxxxxxxxxxxxx",
"device_id": "ECYEOKVPLG",
"room_id": "!FYCmBSkCRUNvZDBaDQ:matrix.qqs.tw",
"openai_api_key": "xxxxxxxxxxxxxxxxxxxxxxxx",
"api_endpoint": "http://api:3000/conversation",
"access_token": "xxxxxxx",
"bard_token": "xxxxxxx",
"bing_auth_cookie": "xxxxxxxxxxx",
"markdown_formatted": true,
"output_four_images": true,
"import_keys_path": "element-keys.txt",
"import_keys_password": "xxxxxxxxx",
"flowise_api_url": "http://localhost:3000/api/v1/prediction/6deb3c89-45bf-4ac4-a0b0-b2d5ef249d21",
"flowise_api_key": "U3pe0bbVDWOyoJtsDzFJjRvHKTP3FRjODwuM78exC3A=",
"pandora_api_endpoint": "http://127.0.0.1:8008",
"pandora_api_model": "text-davinci-002-render-sha-mobile",
"temperature": 0.8
"device_id": "MatrixChatGPTBot",
"openai_api_key": "xxxxxxxxxxxxxxxxxxxxxxxx"
}

22
full-config.json.sample Normal file
View file

@ -0,0 +1,22 @@
{
"homeserver": "https://matrix-client.matrix.org",
"user_id": "@lullap:xxxxx.org",
"password": "xxxxxxxxxxxxxxxxxx",
"device_id": "MatrixChatGPTBot",
"room_id": "!xxxxxxxxxxxxxxxxxxxxxx:xxxxx.org",
"import_keys_path": "element-keys.txt",
"import_keys_password": "xxxxxxxxxxxxxxxxxxxx",
"openai_api_key": "xxxxxxxxxxxxxxxxxxxxxxxx",
"gpt_api_endpoint": "https://api.openai.com/v1/chat/completions",
"gpt_model": "gpt-3.5-turbo",
"max_tokens": 4000,
"top_p": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"reply_count": 1,
"temperature": 0.8,
"system_prompt": "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
"flowise_api_url": "http://flowise:3000/api/v1/prediction/6deb3c89-45bf-4ac4-a0b0-b2d5ef249d21",
"flowise_api_key": "U3pe0bbVDWOyoJtsDzFJjRvHKTP3FRjODwuM78exC3A=",
"timeout": 120.0
}

9
requirements-dev.txt Normal file
View file

@ -0,0 +1,9 @@
aiofiles
httpx
Markdown
matrix-nio[e2e]
Pillow
tiktoken
tenacity
python-magic
pytest

View file

@ -1,5 +1,5 @@
aiofiles
aiohttp
httpx
Markdown
matrix-nio[e2e]
Pillow

View file

@ -1,101 +0,0 @@
export default {
// Options for the Keyv cache, see https://www.npmjs.com/package/keyv.
// This is used for storing conversations, and supports additional drivers (conversations are stored in memory by default).
// Only necessary when using `ChatGPTClient`, or `BingAIClient` in jailbreak mode.
cacheOptions: {},
// If set, `ChatGPTClient` and `BingAIClient` will use `keyv-file` to store conversations to this JSON file instead of in memory.
// However, `cacheOptions.store` will override this if set
storageFilePath: process.env.STORAGE_FILE_PATH || './cache.json',
chatGptClient: {
// Your OpenAI API key (for `ChatGPTClient`)
openaiApiKey: process.env.OPENAI_API_KEY || '',
// (Optional) Support for a reverse proxy for the completions endpoint (private API server).
// Warning: This will expose your `openaiApiKey` to a third party. Consider the risks before using this.
// reverseProxyUrl: 'https://chatgpt.hato.ai/completions',
// (Optional) Parameters as described in https://platform.openai.com/docs/api-reference/completions
modelOptions: {
// You can override the model name and any other parameters here.
// The default model is `gpt-3.5-turbo`.
model: 'gpt-3.5-turbo',
// Set max_tokens here to override the default max_tokens of 1000 for the completion.
// max_tokens: 1000,
},
// (Optional) Davinci models have a max context length of 4097 tokens, but you may need to change this for other models.
// maxContextTokens: 4097,
// (Optional) You might want to lower this to save money if using a paid model like `text-davinci-003`.
// Earlier messages will be dropped until the prompt is within the limit.
// maxPromptTokens: 3097,
// (Optional) Set custom instructions instead of "You are ChatGPT...".
// (Optional) Set a custom name for the user
// userLabel: 'User',
// (Optional) Set a custom name for ChatGPT ("ChatGPT" by default)
// chatGptLabel: 'Bob',
// promptPrefix: 'You are Bob, a cowboy in Western times...',
// A proxy string like "http://<ip>:<port>"
proxy: '',
// (Optional) Set to true to enable `console.debug()` logging
debug: false,
},
// Options for the Bing client
bingAiClient: {
// Necessary for some people in different countries, e.g. China (https://cn.bing.com)
host: '',
// The "_U" cookie value from bing.com
userToken: '',
// If the above doesn't work, provide all your cookies as a string instead
cookies: '',
// A proxy string like "http://<ip>:<port>"
proxy: '',
// (Optional) Set 'x-forwarded-for' for the request. You can use a fixed IPv4 address or specify a range using CIDR notation,
// and the program will randomly select an address within that range. The 'x-forwarded-for' is not used by default now.
// xForwardedFor: '13.104.0.0/14',
// (Optional) Set 'genImage' to true to enable bing to create images for you. It's disabled by default.
// features: {
// genImage: true,
// },
// (Optional) Set to true to enable `console.debug()` logging
debug: false,
},
chatGptBrowserClient: {
// (Optional) Support for a reverse proxy for the conversation endpoint (private API server).
// Warning: This will expose your access token to a third party. Consider the risks before using this.
reverseProxyUrl: 'https://bypass.churchless.tech/api/conversation',
// Access token from https://chat.openai.com/api/auth/session
accessToken: '',
// Cookies from chat.openai.com (likely not required if using reverse proxy server).
cookies: '',
// A proxy string like "http://<ip>:<port>"
proxy: '',
// (Optional) Set to true to enable `console.debug()` logging
debug: false,
},
// Options for the API server
apiOptions: {
port: process.env.API_PORT || 3000,
host: process.env.API_HOST || 'localhost',
// (Optional) Set to true to enable `console.debug()` logging
debug: false,
// (Optional) Possible options: "chatgpt", "chatgpt-browser", "bing". (Default: "chatgpt")
// clientToUse: 'bing',
// (Optional) Generate titles for each conversation for clients that support it (only ChatGPTClient for now).
// This will be returned as a `title` property in the first response of the conversation.
generateTitles: false,
// (Optional) Set this to allow changing the client or client options in POST /conversation.
// To disable, set to `null`.
perMessageClientOptionsWhitelist: {
// The ability to switch clients using `clientOptions.clientToUse` will be disabled if `validClientsToUse` is not set.
// To allow switching clients per message, you must set `validClientsToUse` to a non-empty array.
validClientsToUse: ['bing', 'chatgpt'], // values from possible `clientToUse` options above
// The Object key, e.g. "chatgpt", is a value from `validClientsToUse`.
// If not set, ALL options will be ALLOWED to be changed. For example, `bing` is not defined in `perMessageClientOptionsWhitelist` above,
// so all options for `bingAiClient` will be allowed to be changed.
// If set, ONLY the options listed here will be allowed to be changed.
// In this example, each array element is a string representing a property in `chatGptClient` above.
},
},
// Options for the CLI app
cliOptions: {
// (Optional) Possible options: "chatgpt", "bing".
// clientToUse: 'bing',
},
};

View file

@ -1,45 +0,0 @@
import json
import aiohttp
from log import getlogger
logger = getlogger()
class askGPT:
def __init__(self, session: aiohttp.ClientSession):
self.session = session
async def oneTimeAsk(
self, prompt: str, api_endpoint: str, headers: dict, temperature: float = 0.8
) -> str:
jsons = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": prompt,
},
],
"temperature": temperature,
}
max_try = 2
while max_try > 0:
try:
async with self.session.post(
url=api_endpoint,
json=jsons,
headers=headers,
timeout=120,
) as response:
status_code = response.status
if not status_code == 200:
# print failed reason
logger.warning(str(response.reason))
max_try = max_try - 1
continue
resp = await response.read()
return json.loads(resp)["choices"][0]["message"]["content"]
except Exception as e:
raise Exception(e)

View file

@ -5,9 +5,9 @@ import re
import sys
import traceback
from typing import Union, Optional
import uuid
import aiohttp
import httpx
from nio import (
AsyncClient,
AsyncClientConfig,
@ -28,19 +28,15 @@ from nio import (
)
from nio.store.database import SqliteStore
from askgpt import askGPT
from chatgpt_bing import GPTBOT
from BingImageGen import ImageGenAsync
from log import getlogger
from send_image import send_room_image
from send_message import send_room_message
from bard import Bardbot
from flowise import flowise_query
from pandora_api import Pandora
from gptbot import Chatbot
logger = getlogger()
chatgpt_api_endpoint = "https://api.openai.com/v1/chat/completions"
base_path = Path(os.path.dirname(__file__)).parent
DEVICE_NAME = "MatrixChatGPTBot"
GENERAL_ERROR_MESSAGE = "Something went wrong, please try again or contact admin."
class Bot:
@ -48,77 +44,75 @@ class Bot:
self,
homeserver: str,
user_id: str,
device_id: str,
api_endpoint: Optional[str] = None,
openai_api_key: Union[str, None] = None,
temperature: Union[float, None] = None,
room_id: Union[str, None] = None,
password: Union[str, None] = None,
access_token: Union[str, None] = None,
bard_token: Union[str, None] = None,
jailbreakEnabled: Union[bool, None] = True,
bing_auth_cookie: Union[str, None] = "",
markdown_formatted: Union[bool, None] = False,
output_four_images: Union[bool, None] = False,
device_id: str = "MatrixChatGPTBot",
room_id: Union[str, None] = None,
import_keys_path: Optional[str] = None,
import_keys_password: Optional[str] = None,
openai_api_key: Union[str, None] = None,
gpt_api_endpoint: Optional[str] = None,
gpt_model: Optional[str] = None,
max_tokens: Optional[int] = None,
top_p: Optional[float] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
reply_count: Optional[int] = None,
system_prompt: Optional[str] = None,
temperature: Union[float, None] = None,
flowise_api_url: Optional[str] = None,
flowise_api_key: Optional[str] = None,
pandora_api_endpoint: Optional[str] = None,
pandora_api_model: Optional[str] = None,
timeout: Union[float, None] = None,
):
if homeserver is None or user_id is None or device_id is None:
logger.warning("homeserver && user_id && device_id is required")
sys.exit(1)
if password is None and access_token is None:
logger.warning("password or access_toekn is required")
if password is None:
logger.warning("password is required")
sys.exit(1)
self.homeserver = homeserver
self.user_id = user_id
self.password = password
self.access_token = access_token
self.bard_token = bard_token
self.device_id = device_id
self.room_id = room_id
self.openai_api_key = openai_api_key
self.bing_auth_cookie = bing_auth_cookie
self.api_endpoint = api_endpoint
self.import_keys_path = import_keys_path
self.import_keys_password = import_keys_password
self.flowise_api_url = flowise_api_url
self.flowise_api_key = flowise_api_key
self.pandora_api_endpoint = pandora_api_endpoint
self.temperature = temperature
self.homeserver: str = homeserver
self.user_id: str = user_id
self.password: str = password
self.device_id: str = device_id
self.room_id: str = room_id
self.session = aiohttp.ClientSession()
self.openai_api_key: str = openai_api_key
self.gpt_api_endpoint: str = (
gpt_api_endpoint or "https://api.openai.com/v1/chat/completions"
)
self.gpt_model: str = gpt_model or "gpt-3.5-turbo"
self.max_tokens: int = max_tokens or 4000
self.top_p: float = top_p or 1.0
self.temperature: float = temperature or 0.8
self.presence_penalty: float = presence_penalty or 0.0
self.frequency_penalty: float = frequency_penalty or 0.0
self.reply_count: int = reply_count or 1
self.system_prompt: str = (
system_prompt
or "You are ChatGPT, \
a large language model trained by OpenAI. Respond conversationally"
)
if openai_api_key is not None:
if not self.openai_api_key.startswith("sk-"):
logger.warning("invalid openai api key")
sys.exit(1)
self.import_keys_path: str = import_keys_path
self.import_keys_password: str = import_keys_password
self.flowise_api_url: str = flowise_api_url
self.flowise_api_key: str = flowise_api_key
if jailbreakEnabled is None:
self.jailbreakEnabled = True
else:
self.jailbreakEnabled = jailbreakEnabled
self.timeout: float = timeout or 120.0
if markdown_formatted is None:
self.markdown_formatted = False
else:
self.markdown_formatted = markdown_formatted
self.base_path = Path(os.path.dirname(__file__)).parent
if output_four_images is None:
self.output_four_images = False
else:
self.output_four_images = output_four_images
self.httpx_client = httpx.AsyncClient(
follow_redirects=True,
timeout=self.timeout,
)
# initialize AsyncClient object
self.store_path = base_path
self.store_path = self.base_path
self.config = AsyncClientConfig(
store=SqliteStore,
store_name="db",
store_name="sync_db",
store_sync_tokens=True,
encryption_enabled=True,
)
@ -130,8 +124,21 @@ class Bot:
store_path=self.store_path,
)
if self.access_token is not None:
self.client.access_token = self.access_token
# initialize Chatbot object
self.chatbot = Chatbot(
aclient=self.httpx_client,
api_key=self.openai_api_key,
api_url=self.gpt_api_endpoint,
engine=self.gpt_model,
timeout=self.timeout,
max_tokens=self.max_tokens,
top_p=self.top_p,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
reply_count=self.reply_count,
system_prompt=self.system_prompt,
temperature=self.temperature,
)
# setup event callbacks
self.client.add_event_callback(self.message_callback, (RoomMessageText,))
@ -144,81 +151,22 @@ class Bot:
# regular expression to match keyword commands
self.gpt_prog = re.compile(r"^\s*!gpt\s*(.+)$")
self.chat_prog = re.compile(r"^\s*!chat\s*(.+)$")
self.bing_prog = re.compile(r"^\s*!bing\s*(.+)$")
self.bard_prog = re.compile(r"^\s*!bard\s*(.+)$")
self.pic_prog = re.compile(r"^\s*!pic\s*(.+)$")
self.lc_prog = re.compile(r"^\s*!lc\s*(.+)$")
self.help_prog = re.compile(r"^\s*!help\s*.*$")
self.talk_prog = re.compile(r"^\s*!talk\s*(.+)$")
self.goon_prog = re.compile(r"^\s*!goon\s*.*$")
self.new_prog = re.compile(r"^\s*!new\s*(.+)$")
# initialize askGPT class
self.askgpt = askGPT(self.session)
# request header for !gpt command
self.gptheaders = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.openai_api_key}",
}
# initialize bing and chatgpt
if self.api_endpoint is not None:
self.gptbot = GPTBOT(self.api_endpoint, self.session)
self.chatgpt_data = {}
self.bing_data = {}
# initialize BingImageGenAsync
if self.bing_auth_cookie != "":
self.imageGen = ImageGenAsync(self.bing_auth_cookie, quiet=True)
# initialize pandora
if pandora_api_endpoint is not None:
self.pandora = Pandora(
api_endpoint=pandora_api_endpoint, clientSession=self.session
)
if pandora_api_model is None:
self.pandora_api_model = "text-davinci-002-render-sha-mobile"
else:
self.pandora_api_model = pandora_api_model
self.pandora_data = {}
# initialize bard
self.bard_data = {}
def __del__(self):
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(self._close())
async def _close(self):
await self.session.close()
async def close(self, task: asyncio.Task) -> None:
await self.httpx_client.aclose()
await self.client.close()
task.cancel()
logger.info("Bot closed!")
def chatgpt_session_init(self, sender_id: str) -> None:
self.chatgpt_data[sender_id] = {
"first_time": True,
}
def bing_session_init(self, sender_id: str) -> None:
self.bing_data[sender_id] = {
"first_time": True,
}
def pandora_session_init(self, sender_id: str) -> None:
self.pandora_data[sender_id] = {
"conversation_id": None,
"parent_message_id": str(uuid.uuid4()),
"first_time": True,
}
async def bard_session_init(self, sender_id: str) -> None:
self.bard_data[sender_id] = {
"instance": await Bardbot.create(self.bard_token, 60),
}
# message_callback RoomMessageText event
async def message_callback(self, room: MatrixRoom, event: RoomMessageText) -> None:
if self.room_id is None:
@ -267,7 +215,7 @@ class Bot:
except Exception as e:
logger.error(e, exc_info=True)
if self.api_endpoint is not None:
if self.gpt_api_endpoint is not None:
# chatgpt
n = self.chat_prog.match(content_body)
if n:
@ -293,58 +241,6 @@ class Bot:
self.client, room_id, reply_message="API_KEY not provided"
)
# bing ai
# if self.bing_api_endpoint != "":
# bing ai can be used without cookie
b = self.bing_prog.match(content_body)
if b:
if sender_id not in self.bing_data:
self.bing_session_init(sender_id)
prompt = b.group(1)
# raw_content_body used for construct formatted_body
try:
asyncio.create_task(
self.bing(
room_id,
reply_to_event_id,
prompt,
sender_id,
raw_user_message,
)
)
except Exception as e:
logger.error(e, exc_info=True)
# Image Generation by Microsoft Bing
if self.bing_auth_cookie != "":
i = self.pic_prog.match(content_body)
if i:
prompt = i.group(1)
try:
asyncio.create_task(self.pic(room_id, prompt))
except Exception as e:
logger.error(e, exc_info=True)
# Google's Bard
if self.bard_token is not None:
if sender_id not in self.bard_data:
await self.bard_session_init(sender_id)
b = self.bard_prog.match(content_body)
if b:
prompt = b.group(1)
try:
asyncio.create_task(
self.bard(
room_id,
reply_to_event_id,
prompt,
sender_id,
raw_user_message,
)
)
except Exception as e:
logger.error(e, exc_info=True)
# lc command
if self.flowise_api_url is not None:
m = self.lc_prog.match(content_body)
@ -364,46 +260,10 @@ class Bot:
await send_room_message(self.client, room_id, reply_message={e})
logger.error(e, exc_info=True)
# pandora
if self.pandora_api_endpoint is not None:
t = self.talk_prog.match(content_body)
if t:
if sender_id not in self.pandora_data:
self.pandora_session_init(sender_id)
prompt = t.group(1)
try:
asyncio.create_task(
self.talk(
room_id,
reply_to_event_id,
prompt,
sender_id,
raw_user_message,
)
)
except Exception as e:
logger.error(e, exc_info=True)
g = self.goon_prog.match(content_body)
if g:
if sender_id not in self.pandora_data:
self.pandora_session_init(sender_id)
try:
asyncio.create_task(
self.goon(
room_id,
reply_to_event_id,
sender_id,
raw_user_message,
)
)
except Exception as e:
logger.error(e, exc_info=True)
# !new command
n = self.new_prog.match(content_body)
if n:
new_command_kind = n.group(1)
new_command = n.group(1)
try:
asyncio.create_task(
self.new(
@ -411,7 +271,7 @@ class Bot:
reply_to_event_id,
sender_id,
raw_user_message,
new_command_kind,
new_command,
)
)
except Exception as e:
@ -421,7 +281,11 @@ class Bot:
h = self.help_prog.match(content_body)
if h:
try:
asyncio.create_task(self.help(room_id))
asyncio.create_task(
self.help(
room_id, reply_to_event_id, sender_id, raw_user_message
)
)
except Exception as e:
logger.error(e, exc_info=True)
@ -670,7 +534,7 @@ class Bot:
self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message
):
try:
await self.client.room_typing(room_id, timeout=300000)
await self.client.room_typing(room_id, timeout=int(self.timeout) * 1000)
if (
self.chatgpt_data[sender_id]["first_time"]
or "conversationId" not in self.chatgpt_data[sender_id]
@ -705,128 +569,43 @@ class Bot:
self.client,
room_id,
reply_message=content,
reply_to_event_id="",
reply_to_event_id=reply_to_event_id,
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
except Exception:
await send_room_message(
self.client,
room_id,
reply_message=GENERAL_ERROR_MESSAGE,
reply_to_event_id=reply_to_event_id,
)
# !gpt command
async def gpt(
self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message
) -> None:
try:
# sending typing state
await self.client.room_typing(room_id, timeout=30000)
# timeout 300s
text = await asyncio.wait_for(
self.askgpt.oneTimeAsk(
prompt, chatgpt_api_endpoint, self.gptheaders, self.temperature
),
timeout=300,
# sending typing state, seconds to milliseconds
await self.client.room_typing(room_id, timeout=int(self.timeout) * 1000)
responseMessage = await self.chatbot.oneTimeAsk(
prompt=prompt,
)
text = text.strip()
await send_room_message(
self.client,
room_id,
reply_message=text,
reply_to_event_id="",
reply_message=responseMessage.strip(),
reply_to_event_id=reply_to_event_id,
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception:
await send_room_message(
self.client,
room_id,
reply_message="Error encountered, please try again or contact admin.",
)
# !bing command
async def bing(
self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message
) -> None:
try:
# sending typing state
await self.client.room_typing(room_id, timeout=300000)
if (
self.bing_data[sender_id]["first_time"]
or "conversationId" not in self.bing_data[sender_id]
):
self.bing_data[sender_id]["first_time"] = False
payload = {
"message": prompt,
"clientOptions": {
"clientToUse": "bing",
},
}
else:
payload = {
"message": prompt,
"clientOptions": {
"clientToUse": "bing",
},
"conversationSignature": self.bing_data[sender_id][
"conversationSignature"
],
"conversationId": self.bing_data[sender_id]["conversationId"],
"clientId": self.bing_data[sender_id]["clientId"],
"invocationId": self.bing_data[sender_id]["invocationId"],
}
resp = await self.gptbot.queryBing(payload)
content = "".join(
[body["text"] for body in resp["details"]["adaptiveCards"][0]["body"]]
)
self.bing_data[sender_id]["conversationSignature"] = resp[
"conversationSignature"
]
self.bing_data[sender_id]["conversationId"] = resp["conversationId"]
self.bing_data[sender_id]["clientId"] = resp["clientId"]
self.bing_data[sender_id]["invocationId"] = resp["invocationId"]
text = content.strip()
await send_room_message(
self.client,
room_id,
reply_message=text,
reply_to_event_id="",
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
# !bard command
async def bard(
self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message
) -> None:
try:
# sending typing state
await self.client.room_typing(room_id)
response = await self.bard_data[sender_id]["instance"].ask(prompt)
content = str(response["content"]).strip()
await send_room_message(
self.client,
room_id,
reply_message=content,
reply_to_event_id="",
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except TimeoutError:
await send_room_message(self.client, room_id, reply_message="TimeoutError")
except Exception:
await send_room_message(
self.client,
room_id,
reply_message="Error calling Bard API, please contact admin.",
reply_message=GENERAL_ERROR_MESSAGE,
reply_to_event_id=reply_to_event_id,
)
# !lc command
@ -835,120 +614,32 @@ class Bot:
) -> None:
try:
# sending typing state
await self.client.room_typing(room_id)
await self.client.room_typing(room_id, timeout=int(self.timeout) * 1000)
if self.flowise_api_key is not None:
headers = {"Authorization": f"Bearer {self.flowise_api_key}"}
response = await flowise_query(
self.flowise_api_url, prompt, self.session, headers
responseMessage = await flowise_query(
self.flowise_api_url, prompt, self.httpx_client, headers
)
else:
response = await flowise_query(
self.flowise_api_url, prompt, self.session
responseMessage = await flowise_query(
self.flowise_api_url, prompt, self.httpx_client
)
await send_room_message(
self.client,
room_id,
reply_message=response,
reply_to_event_id="",
reply_message=responseMessage.strip(),
reply_to_event_id=reply_to_event_id,
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception:
await send_room_message(
self.client,
room_id,
reply_message="Error calling flowise API, please contact admin.",
reply_message=GENERAL_ERROR_MESSAGE,
reply_to_event_id=reply_to_event_id,
)
# !talk command
async def talk(
self, room_id, reply_to_event_id, prompt, sender_id, raw_user_message
) -> None:
try:
if self.pandora_data[sender_id]["conversation_id"] is not None:
data = {
"prompt": prompt,
"model": self.pandora_api_model,
"parent_message_id": self.pandora_data[sender_id][
"parent_message_id"
],
"conversation_id": self.pandora_data[sender_id]["conversation_id"],
"stream": False,
}
else:
data = {
"prompt": prompt,
"model": self.pandora_api_model,
"parent_message_id": self.pandora_data[sender_id][
"parent_message_id"
],
"stream": False,
}
# sending typing state
await self.client.room_typing(room_id)
response = await self.pandora.talk(data)
self.pandora_data[sender_id]["conversation_id"] = response[
"conversation_id"
]
self.pandora_data[sender_id]["parent_message_id"] = response["message"][
"id"
]
content = response["message"]["content"]["parts"][0]
if self.pandora_data[sender_id]["first_time"]:
self.pandora_data[sender_id]["first_time"] = False
data = {
"model": self.pandora_api_model,
"message_id": self.pandora_data[sender_id]["parent_message_id"],
}
await self.pandora.gen_title(
data, self.pandora_data[sender_id]["conversation_id"]
)
await send_room_message(
self.client,
room_id,
reply_message=content,
reply_to_event_id="",
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
# !goon command
async def goon(
self, room_id, reply_to_event_id, sender_id, raw_user_message
) -> None:
try:
# sending typing state
await self.client.room_typing(room_id)
data = {
"model": self.pandora_api_model,
"parent_message_id": self.pandora_data[sender_id]["parent_message_id"],
"conversation_id": self.pandora_data[sender_id]["conversation_id"],
"stream": False,
}
response = await self.pandora.goon(data)
self.pandora_data[sender_id]["conversation_id"] = response[
"conversation_id"
]
self.pandora_data[sender_id]["parent_message_id"] = response["message"][
"id"
]
content = response["message"]["content"]["parts"][0]
await send_room_message(
self.client,
room_id,
reply_message=content,
reply_to_event_id="",
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
# !new command
async def new(
self,
@ -956,29 +647,14 @@ class Bot:
reply_to_event_id,
sender_id,
raw_user_message,
new_command_kind,
new_command,
) -> None:
try:
if "talk" in new_command_kind:
self.pandora_session_init(sender_id)
content = (
"New conversation created, please use !talk to start chatting!"
)
elif "chat" in new_command_kind:
if "chat" in new_command:
self.chatgpt_session_init(sender_id)
content = (
"New conversation created, please use !chat to start chatting!"
)
elif "bing" in new_command_kind:
self.bing_session_init(sender_id)
content = (
"New conversation created, please use !bing to start chatting!"
)
elif "bard" in new_command_kind:
await self.bard_session_init(sender_id)
content = (
"New conversation created, please use !bard to start chatting!"
)
else:
content = "Unkown keyword, please use !help to see the usage!"
@ -986,32 +662,41 @@ class Bot:
self.client,
room_id,
reply_message=content,
reply_to_event_id="",
reply_to_event_id=reply_to_event_id,
sender_id=sender_id,
user_message=raw_user_message,
markdown_formatted=self.markdown_formatted,
)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
except Exception:
await send_room_message(
self.client,
room_id,
reply_message=GENERAL_ERROR_MESSAGE,
reply_to_event_id=reply_to_event_id,
)
# !pic command
async def pic(self, room_id, prompt):
async def pic(self, room_id, prompt, replay_to_event_id):
try:
await self.client.room_typing(room_id, timeout=300000)
await self.client.room_typing(room_id, timeout=int(self.timeout) * 1000)
# generate image
links = await self.imageGen.get_images(prompt)
image_path_list = await self.imageGen.save_images(
links, base_path / "images", self.output_four_images
links, self.base_path / "images", self.output_four_images
)
# send image
for image_path in image_path_list:
await send_room_image(self.client, room_id, image_path)
await self.client.room_typing(room_id, typing_state=False)
except Exception as e:
await send_room_message(self.client, room_id, reply_message=str(e))
await send_room_message(
self.client,
room_id,
reply_message=str(e),
reply_to_event_id=replay_to_event_id,
)
# !help command
async def help(self, room_id):
async def help(self, room_id, reply_to_event_id, sender_id, user_message):
help_info = (
"!gpt [prompt], generate a one time response without context conversation\n"
+ "!chat [prompt], chat with context conversation\n"
@ -1025,21 +710,24 @@ class Bot:
+ "!help, help message"
) # noqa: E501
await send_room_message(self.client, room_id, reply_message=help_info)
await send_room_message(
self.client,
room_id,
reply_message=help_info,
sender_id=sender_id,
user_message=user_message,
reply_to_event_id=reply_to_event_id,
)
# bot login
async def login(self) -> None:
if self.access_token is not None:
logger.info("Login via access_token")
else:
logger.info("Login via password")
try:
resp = await self.client.login(password=self.password)
if not isinstance(resp, LoginResponse):
logger.error("Login Failed")
sys.exit(1)
except Exception as e:
logger.error(f"Error: {e}", exc_info=True)
resp = await self.client.login(password=self.password, device_name=DEVICE_NAME)
if not isinstance(resp, LoginResponse):
logger.error("Login Failed")
await self.httpx_client.aclose()
await self.client.close()
sys.exit(1)
logger.info("Success login via password")
# import keys
async def import_keys(self):

View file

@ -1,8 +1,8 @@
import aiohttp
import httpx
async def flowise_query(
api_url: str, prompt: str, session: aiohttp.ClientSession, headers: dict = None
api_url: str, prompt: str, session: httpx.AsyncClient, headers: dict = None
) -> str:
"""
Sends a query to the Flowise API and returns the response.
@ -24,17 +24,15 @@ async def flowise_query(
)
else:
response = await session.post(api_url, json={"question": prompt})
return await response.json()
return await response.text()
async def test():
session = aiohttp.ClientSession()
api_url = (
"http://127.0.0.1:3000/api/v1/prediction/683f9ea8-e670-4d51-b657-0886eab9cea1"
)
prompt = "What is the capital of France?"
response = await flowise_query(api_url, prompt, session)
print(response)
async with httpx.AsyncClient() as session:
api_url = "http://127.0.0.1:3000/api/v1/prediction/683f9ea8-e670-4d51-b657-0886eab9cea1"
prompt = "What is the capital of France?"
response = await flowise_query(api_url, prompt, session)
print(response)
if __name__ == "__main__":

292
src/gptbot.py Normal file
View file

@ -0,0 +1,292 @@
"""
Code derived from https://github.com/acheong08/ChatGPT/blob/main/src/revChatGPT/V3.py
A simple wrapper for the official ChatGPT API
"""
import json
from typing import AsyncGenerator
from tenacity import retry, stop_after_attempt, wait_random_exponential
import httpx
import tiktoken
ENGINES = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4",
"gpt-4-32k",
"gpt-4-0613",
"gpt-4-32k-0613",
]
class Chatbot:
"""
Official ChatGPT API
"""
def __init__(
self,
aclient: httpx.AsyncClient,
api_key: str,
api_url: str = None,
engine: str = None,
timeout: float = None,
max_tokens: int = None,
temperature: float = 0.8,
top_p: float = 1.0,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
reply_count: int = 1,
truncate_limit: int = None,
system_prompt: str = None,
) -> None:
"""
Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
"""
self.engine: str = engine or "gpt-3.5-turbo"
self.api_key: str = api_key
self.api_url: str = api_url or "https://api.openai.com/v1/chat/completions"
self.system_prompt: str = (
system_prompt
or "You are ChatGPT, \
a large language model trained by OpenAI. Respond conversationally"
)
self.max_tokens: int = max_tokens or (
31000
if "gpt-4-32k" in engine
else 7000
if "gpt-4" in engine
else 15000
if "gpt-3.5-turbo-16k" in engine
else 4000
)
self.truncate_limit: int = truncate_limit or (
30500
if "gpt-4-32k" in engine
else 6500
if "gpt-4" in engine
else 14500
if "gpt-3.5-turbo-16k" in engine
else 3500
)
self.temperature: float = temperature
self.top_p: float = top_p
self.presence_penalty: float = presence_penalty
self.frequency_penalty: float = frequency_penalty
self.reply_count: int = reply_count
self.timeout: float = timeout
self.aclient = aclient
self.conversation: dict[str, list[dict]] = {
"default": [
{
"role": "system",
"content": system_prompt,
},
],
}
if self.get_token_count("default") > self.max_tokens:
raise Exception("System prompt is too long")
def add_to_conversation(
self,
message: str,
role: str,
convo_id: str = "default",
) -> None:
"""
Add a message to the conversation
"""
self.conversation[convo_id].append({"role": role, "content": message})
def __truncate_conversation(self, convo_id: str = "default") -> None:
"""
Truncate the conversation
"""
while True:
if (
self.get_token_count(convo_id) > self.truncate_limit
and len(self.conversation[convo_id]) > 1
):
# Don't remove the first message
self.conversation[convo_id].pop(1)
else:
break
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def get_token_count(self, convo_id: str = "default") -> int:
"""
Get token count
"""
if self.engine not in ENGINES:
raise NotImplementedError(
f"Engine {self.engine} is not supported. Select from {ENGINES}",
)
tiktoken.model.MODEL_TO_ENCODING["gpt-4"] = "cl100k_base"
encoding = tiktoken.encoding_for_model(self.engine)
num_tokens = 0
for message in self.conversation[convo_id]:
# every message follows <im_start>{role/name}\n{content}<im_end>\n
num_tokens += 5
for key, value in message.items():
if value:
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += 5 # role is always required and always 1 token
num_tokens += 5 # every reply is primed with <im_start>assistant
return num_tokens
def get_max_tokens(self, convo_id: str) -> int:
"""
Get max tokens
"""
return self.max_tokens - self.get_token_count(convo_id)
async def ask_stream_async(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
model: str = None,
pass_history: bool = True,
**kwargs,
) -> AsyncGenerator[str, None]:
"""
Ask a question
"""
# Make conversation if it doesn't exist
if convo_id not in self.conversation:
self.reset(convo_id=convo_id, system_prompt=self.system_prompt)
self.add_to_conversation(prompt, "user", convo_id=convo_id)
self.__truncate_conversation(convo_id=convo_id)
# Get response
async with self.aclient.stream(
"post",
self.api_url,
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
json={
"model": model or self.engine,
"messages": self.conversation[convo_id] if pass_history else [prompt],
"stream": True,
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"n": kwargs.get("n", self.reply_count),
"user": role,
"max_tokens": min(
self.get_max_tokens(convo_id=convo_id),
kwargs.get("max_tokens", self.max_tokens),
),
},
timeout=kwargs.get("timeout", self.timeout),
) as response:
if response.status_code != 200:
await response.aread()
raise Exception(
f"{response.status_code} {response.reason_phrase} {response.text}",
)
response_role: str = ""
full_response: str = ""
async for line in response.aiter_lines():
line = line.strip()
if not line:
continue
# Remove "data: "
line = line[6:]
if line == "[DONE]":
break
resp: dict = json.loads(line)
if "error" in resp:
raise Exception(f"{resp['error']}")
choices = resp.get("choices")
if not choices:
continue
delta: dict[str, str] = choices[0].get("delta")
if not delta:
continue
if "role" in delta:
response_role = delta["role"]
if "content" in delta:
content: str = delta["content"]
full_response += content
yield content
self.add_to_conversation(full_response, response_role, convo_id=convo_id)
async def ask_async(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
model: str = None,
pass_history: bool = True,
**kwargs,
) -> str:
"""
Non-streaming ask
"""
response = self.ask_stream_async(
prompt=prompt,
role=role,
convo_id=convo_id,
model=model,
pass_history=pass_history,
**kwargs,
)
full_response: str = "".join([r async for r in response])
return full_response
def reset(self, convo_id: str = "default", system_prompt: str = None) -> None:
"""
Reset the conversation
"""
self.conversation[convo_id] = [
{"role": "system", "content": system_prompt or self.system_prompt},
]
@retry(wait=wait_random_exponential(min=2, max=5), stop=stop_after_attempt(3))
async def oneTimeAsk(
self,
prompt: str,
role: str = "user",
model: str = None,
**kwargs,
) -> str:
async with self.aclient.post(
url=self.api_url,
json={
"model": model or self.engine,
"messages": prompt,
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"user": role,
},
headers={"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
timeout=kwargs.get("timeout", self.timeout),
) as response:
resp = await response.read()
return json.loads(resp)["choices"][0]["message"]["content"]

View file

@ -2,6 +2,8 @@ import asyncio
import json
import os
from pathlib import Path
import signal
import sys
from bot import Bot
from log import getlogger
@ -13,8 +15,12 @@ async def main():
need_import_keys = False
config_path = Path(os.path.dirname(__file__)).parent / "config.json"
if os.path.isfile(config_path):
fp = open(config_path, encoding="utf8")
config = json.load(fp)
try:
fp = open(config_path, encoding="utf8")
config = json.load(fp)
except Exception:
logger.error("config.json load error, please check the file")
sys.exit(1)
matrix_bot = Bot(
homeserver=config.get("homeserver"),
@ -22,21 +28,21 @@ async def main():
password=config.get("password"),
device_id=config.get("device_id"),
room_id=config.get("room_id"),
openai_api_key=config.get("openai_api_key"),
api_endpoint=config.get("api_endpoint"),
access_token=config.get("access_token"),
bard_token=config.get("bard_token"),
jailbreakEnabled=config.get("jailbreakEnabled"),
bing_auth_cookie=config.get("bing_auth_cookie"),
markdown_formatted=config.get("markdown_formatted"),
output_four_images=config.get("output_four_images"),
import_keys_path=config.get("import_keys_path"),
import_keys_password=config.get("import_keys_password"),
openai_api_key=config.get("openai_api_key"),
gpt_api_endpoint=config.get("gpt_api_endpoint"),
gpt_model=config.get("gpt_model"),
max_tokens=int(config.get("max_tokens")),
top_p=float(config.get("top_p")),
presence_penalty=float(config.get("presence_penalty")),
frequency_penalty=float(config.get("frequency_penalty")),
reply_count=int(config.get("reply_count")),
system_prompt=config.get("system_prompt"),
temperature=float(config.get("temperature")),
flowise_api_url=config.get("flowise_api_url"),
flowise_api_key=config.get("flowise_api_key"),
pandora_api_endpoint=config.get("pandora_api_endpoint"),
pandora_api_model=config.get("pandora_api_model"),
temperature=float(config.get("temperature", 0.8)),
timeout=float(config.get("timeout")),
)
if (
config.get("import_keys_path")
@ -51,24 +57,21 @@ async def main():
password=os.environ.get("PASSWORD"),
device_id=os.environ.get("DEVICE_ID"),
room_id=os.environ.get("ROOM_ID"),
openai_api_key=os.environ.get("OPENAI_API_KEY"),
api_endpoint=os.environ.get("API_ENDPOINT"),
access_token=os.environ.get("ACCESS_TOKEN"),
bard_token=os.environ.get("BARD_TOKEN"),
jailbreakEnabled=os.environ.get("JAILBREAKENABLED", "false").lower()
in ("true", "1", "t"),
bing_auth_cookie=os.environ.get("BING_AUTH_COOKIE"),
markdown_formatted=os.environ.get("MARKDOWN_FORMATTED", "false").lower()
in ("true", "1", "t"),
output_four_images=os.environ.get("OUTPUT_FOUR_IMAGES", "false").lower()
in ("true", "1", "t"),
import_keys_path=os.environ.get("IMPORT_KEYS_PATH"),
import_keys_password=os.environ.get("IMPORT_KEYS_PASSWORD"),
openai_api_key=os.environ.get("OPENAI_API_KEY"),
gpt_api_endpoint=os.environ.get("GPT_API_ENDPOINT"),
gpt_model=os.environ.get("GPT_MODEL"),
max_tokens=int(os.environ.get("MAX_TOKENS")),
top_p=float(os.environ.get("TOP_P")),
presence_penalty=float(os.environ.get("PRESENCE_PENALTY")),
frequency_penalty=float(os.environ.get("FREQUENCY_PENALTY")),
reply_count=int(os.environ.get("REPLY_COUNT")),
system_prompt=os.environ.get("SYSTEM_PROMPT"),
temperature=float(os.environ.get("TEMPERATURE")),
flowise_api_url=os.environ.get("FLOWISE_API_URL"),
flowise_api_key=os.environ.get("FLOWISE_API_KEY"),
pandora_api_endpoint=os.environ.get("PANDORA_API_ENDPOINT"),
pandora_api_model=os.environ.get("PANDORA_API_MODEL"),
temperature=float(os.environ.get("TEMPERATURE", 0.8)),
timeout=float(os.environ.get("TIMEOUT")),
)
if (
os.environ.get("IMPORT_KEYS_PATH")
@ -80,7 +83,20 @@ async def main():
if need_import_keys:
logger.info("start import_keys process, this may take a while...")
await matrix_bot.import_keys()
await matrix_bot.sync_forever(timeout=30000, full_state=True)
sync_task = asyncio.create_task(
matrix_bot.sync_forever(timeout=30000, full_state=True)
)
# handle signal interrupt
loop = asyncio.get_running_loop()
for signame in ("SIGINT", "SIGTERM"):
loop.add_signal_handler(
getattr(signal, signame),
lambda: asyncio.create_task(matrix_bot.close(sync_task)),
)
await sync_task
if __name__ == "__main__":

View file

@ -1,111 +0,0 @@
# API wrapper for https://github.com/pengzhile/pandora/blob/master/doc/HTTP-API.md
import asyncio
import uuid
import aiohttp
class Pandora:
def __init__(
self,
api_endpoint: str,
clientSession: aiohttp.ClientSession,
) -> None:
self.api_endpoint = api_endpoint.rstrip("/")
self.session = clientSession
async def __aenter__(self):
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
await self.session.close()
async def gen_title(self, data: dict, conversation_id: str) -> None:
"""
data = {
"model": "",
"message_id": "",
}
:param data: dict
:param conversation_id: str
:return: None
"""
api_endpoint = (
self.api_endpoint + f"/api/conversation/gen_title/{conversation_id}"
)
async with self.session.post(api_endpoint, json=data) as resp:
return await resp.json()
async def talk(self, data: dict) -> None:
api_endpoint = self.api_endpoint + "/api/conversation/talk"
"""
data = {
"prompt": "",
"model": "",
"parent_message_id": "",
"conversation_id": "", # ignore at the first time
"stream": True,
}
:param data: dict
:return: None
"""
data["message_id"] = str(uuid.uuid4())
async with self.session.post(api_endpoint, json=data) as resp:
return await resp.json()
async def goon(self, data: dict) -> None:
"""
data = {
"model": "",
"parent_message_id": "",
"conversation_id": "",
"stream": True,
}
"""
api_endpoint = self.api_endpoint + "/api/conversation/goon"
async with self.session.post(api_endpoint, json=data) as resp:
return await resp.json()
async def test():
model = "text-davinci-002-render-sha-mobile"
api_endpoint = "http://127.0.0.1:8008"
async with aiohttp.ClientSession() as session:
client = Pandora(api_endpoint, session)
conversation_id = None
parent_message_id = str(uuid.uuid4())
first_time = True
async with client:
while True:
prompt = input("BobMaster: ")
if conversation_id:
data = {
"prompt": prompt,
"model": model,
"parent_message_id": parent_message_id,
"conversation_id": conversation_id,
"stream": False,
}
else:
data = {
"prompt": prompt,
"model": model,
"parent_message_id": parent_message_id,
"stream": False,
}
response = await client.talk(data)
conversation_id = response["conversation_id"]
parent_message_id = response["message"]["id"]
content = response["message"]["content"]["parts"][0]
print("ChatGPT: " + content + "\n")
if first_time:
first_time = False
data = {
"model": model,
"message_id": parent_message_id,
}
response = await client.gen_title(data, conversation_id)
if __name__ == "__main__":
asyncio.run(test())

View file

@ -1,5 +1,3 @@
import re
import markdown
from log import getlogger
from nio import AsyncClient
@ -14,32 +12,19 @@ async def send_room_message(
sender_id: str = "",
user_message: str = "",
reply_to_event_id: str = "",
markdown_formatted: bool = False,
) -> None:
NORMAL_BODY = content = {
"msgtype": "m.text",
"body": reply_message,
}
if reply_to_event_id == "":
if markdown_formatted:
# only format message contains multiline codes, *, |
if re.search(r"```|\*|\|", reply_message) is not None:
content = {
"msgtype": "m.text",
"body": reply_message,
"format": "org.matrix.custom.html",
"formatted_body": markdown.markdown(
reply_message,
extensions=["nl2br", "tables", "fenced_code"],
),
}
else:
content = NORMAL_BODY
else:
content = NORMAL_BODY
content = {
"msgtype": "m.text",
"body": reply_message,
"format": "org.matrix.custom.html",
"formatted_body": markdown.markdown(
reply_message,
extensions=["nl2br", "tables", "fenced_code"],
),
}
else:
body = r"> <" + sender_id + r"> " + user_message + r"\n\n" + reply_message
body = "> <" + sender_id + "> " + user_message + "\n\n" + reply_message
format = r"org.matrix.custom.html"
formatted_body = (
r'<mx-reply><blockquote><a href="https://matrix.to/#/'
@ -53,7 +38,10 @@ async def send_room_message(
+ r"</a><br>"
+ user_message
+ r"</blockquote></mx-reply>"
+ reply_message
+ markdown.markdown(
reply_message,
extensions=["nl2br", "tables", "fenced_code"],
)
)
content = {

BIN
sync_db Normal file

Binary file not shown.